

Heatmap-based Object Detection and Tracking

with a Fully Convolutional Neural Network

Fabian Amherd

Elias Rodriguez

fabian.amherd@gmail.com

elias.rodriguez@bluewin.ch

Advisors:

Michael Bucher

Christopher Latkoczy

Kantonsschule Stadelhofen

Schanzengasse 17

8001 Zürich, Switzerland

External Advisors:

Prof. Dr. Tobias Delbrück

Yuhuang Hu

Shasha Guo

ETH Zurich / University of Zurich

Institute of Neuroinformatics (INI)

Winterthurerstrasse 190

8057 Zürich, Switzerland

2021

Per Aspera Ad Astra

i

Contents

1 Introduction 1

1.1 What is Artificial Intelligence? . 1

1.1.1 Definition of Artificial Intelligence (AI) . 1

1.1.2 Different types of AI . 1

1.1.3 A closer look at the field of AI . 2

1.2 History . 3

1.2.1 Earlier Epochs . 3

1.2.2 AI today . 4

2 Practical Part 5

2.1 Experiment . 5

2.2 Materials and Methods . 5

2.2.1 Data . 5

2.2.2 Network Architecture . 7

2.2.3 Loss Function . 10

2.2.4 Training the Network . 11

2.3 Analysis . 15

3 Discussion 17

3.1 Applications of AI . 17

3.2 Challenges regarding AI . 19

3.2.1 Reliability . 19

3.2.2 Interpretability . 20

3.2.3 Moral Dilemma . 20

3.2.4 Energy and Computing Power Demand . 20

3.3 Outlook . 21

4 Appendix 22

4.1 Reasons for the choice of topic . 22

4.2 Acknowledgements . 22

ii

Abstract

The main topic of this paper is a brief overview

of the field of Artificial Intelligence. The core

of this paper is a practical implementation of an

algorithm for object detection and tracking. The

ability to detect and track fast-moving objects

is crucial for various applications of Artificial

Intelligence like autonomous driving, ball tracking

in sports, robotics or object counting. As part

of this paper the Fully Convolutional Neural

Network ”CueNet” was developed. It detects and

tracks the cueball on a labyrinth game robustly

and reliably. While CueNet V1 has a single

input image, the approach with CueNet V2 was

to take three consecutive 240 x 180-pixel images

as an input and transform them into a probability

heatmap for the cueball’s location. The network

was tested with a separate video that contained all

sorts of distractions to test its robustness. When

confronted with our testing data, CueNet V1

predicted the correct cueball location in 99.6% of

all frames, while CueNet V2 had 99.8% accuracy.

To get access to the source code of the project,

scan the QR-code at the beginning of chapter

2.

1 Introduction

1.1 What is Artificial Intelligence?

1.1.1 Definition of Artificial Intelligence (AI)

Artificial Intelligence (AI) is the simulation of

intelligence in a non-biological structure.

As in many fields, there does not exist one single

agreed-upon definition of Artificial Intelligence. A

definition often used is ”Artificial intelligence (AI) would

be the possession of intelligence, or the exercise of

thought, by machines such as computers.” [1]. So

the only difference to Human Intelligence would be,

that the intelligence is possessed by a machine on a

semiconductor-basis, not by a human in a biological

structure.

The question ”Can machines think?” is very interesting

to consider here. One can also have the opinion that

a machine cannot possess real Intelligence, that it can

only simulate intelligent behaviour. Therefore, another

definition that is around, reads as follows: ”AI [can be

looked at] as an engineering discipline in which researchers

focus on developing useful programs and tools that

perform in domains that normally require intelligence.”

[2]. So we can also define Artificial Intelligence as

algorithms able to solve tasks, that normally require

intelligence to be solved, although these algorithms do

not possess ”Intelligence” in a traditional sense.

1.1.2 Different types of AI

Some people may find it useful to put different algorithms

or ”AI systems” into categories, as a criterion for which

can be used the comparison to a human. The following

categorization is based on the capability of an AI. There

is another popular categorization based on functionality,

which won’t be considered here though.

The least sophisticated type of AI is called Artificial

Narrow Intelligence (ANI) or ”weak AI”. This

is where we would place all of the AI systems we

have encountered up to this point. As Forbes puts it:

”Artificial narrow intelligence refers to AI systems that

can only perform a specific task autonomously using

human-like capabilities.” [3]. Important to consider here

is that these systems can be operating at a superhuman

level of performance, but only in one specific area they

were programmed for.

One step up the ladder we have Artificial General

Intelligence (AGI) or ”strong AI”. These AI systems

have human-level intelligence across all domains, they are

as multi-functional as humans. They can understand,

discuss and generalize like human beings. ”AGI can think,

understand, and act in a way that is indistinguishable

from that of a human in any given situation.” [4]

An Artificial Superintelligence (ASI) would surpass

the capabilities of humans in every aspect. It would be

able to come up with ideas that are impossible to grasp for

humans. Whether it is in science, sports, understanding

emotions, creative thinking, ASI will outperform humans.

The potential of such a machine is tremendous and comes

with unknown consequences.

It has been proposed that the emergence of ASI is almost

inevitable when AGI has been achieved. To justify this,

one only has to look at the advantages of a digital

implementation over a biological one. In the digital

implementation of a brain, the simulation can be copied

1

and accelerated multiple times. Thus, when we create

AGI with a whole brain emulation, we can, with sufficient

computational resources, create a collection of such AIs

that work together at superhuman speeds. [5]

1.1.3 A closer look at the field of AI

Machine Learning (ML)

Machine Learning (ML) is the process that

an Artificial Intelligence goes through when

learning.

Another term for Artificial Intelligence, although less

used, is ”Machine Intelligence”. ”Machine Learning” is

what leads to it.

Machine Learning is the process that an algorithm goes

through when trying to search for patterns in a massive

amount of data. The term refers to a subfield of AI

(see figure 1), but still contains numerous other subfields

(one of which is Deep Learning). The big advantage of

Machine Learning is that the algorithm tries to find the

patterns automatically, it learns through the experience it

gets from the data that gets fed into it. Mathematically,

the program tries to find the best possible function to

map a certain input to a certain output. This is also why

neural networks are sometimes called ”universal function

approximators”.

There are different approaches to how a programmer can

set up the environment for an algorithm to learn. One

approach is called Supervised Learning, its principle

is to present the algorithm with the input, let it output

something, and then give feedback on how close the actual

output was to the desired output, also called the ”Loss”,

by calculating the difference between the actual output

and the label. There are different ways to calculate this

difference, which will be discussed in more detail in 2.2.3

of this paper.

A second approach often used is called Unsupervised

Learning. The goal here is to let the algorithm

automatically find the underlying structure of the data

fed into it. This may help to discover connections that

are not recognizable by humans alone because we can’t

take as much data into respect as computers can.

A third popular approach is Reinforcement Learning.

Here the algorithm becomes an ”agent” in a simulated or

real environment in which it can take actions that lead

to a different state of the environment. The algorithm

constantly tries to change its ”policy” of taking actions

to maximize the reward it gets. [6]

Figure 1: AI, Machine Learning and Deep Learning in a

hierarchical order.

Deep Learning (DL)

If we perform Machine Learning (ML) with a

Deep Neural Network (a form of an AI), it is

called Deep Learning (DL).

One of the biggest subfields of Machine Learning is named

”Deep Learning”. This field addresses the development of

Artificial Neural Networks (ANNs), whose structure

is strongly inspired by the human brain. ANNs will be

discussed in more detail in the first part of 2.2.2 . More

complex tasks often require bigger networks with more

subsequent layers. If an ANN consists of more than three

layers, we call it a Deep Neural Network.[7]

There are dozens of different architectures of ANNs that

excel at specific types of problems. The architectures

we will have a closer look at in this paper are the most

simple form, the Dense Neural Network (DNN), as well as

the Convolutional Neural Network (CNN), which is being

used in the practical part of this work.

Deep Learning is already being applied in all kinds of

different industries all over the world, most widely known

are recommendation systems as on Youtube or Amazon.

Although already used so much, it is said to still have

enormous potential to transform our lives completely. The

2

realised and potential applications of AI (and with it Deep

Learning) will be discussed more closely in 3.1 of this

paper.

1.2 History

The history of AI dates way back several thousand

years where myths and stories of artificial beings with

intelligence were being told. Amongst the old greeks there

existed the myth of Talos, a guardian of the island of

Crete, which was artificially forged by Hephaestus with

the aid of a cyclops. His task was to throw boulders

at ships of invaders and walk three times around the

island’s perimeter daily [8]. From 380 BC to 1900

there have been numerous mathematicians, theologians,

philosophers, professors and authors who mused about

calculating machines, mechanical techniques and other

systems that eventually led to the concept of artificial

human-like thought in non-human beings.

1.2.1 Earlier Epochs

The first real implementation of an AI was proposed

by Warren McCulloch and Walter Pitts in 1943 with a

mathematical model, combined with a computer model

of the biological neuron. [9] At the beginning of

1950, Alan Turing and John von Neumann became

the founding fathers of the technology behind AI, as

they made the transition from analogue and hard-wired

digital computers to computers with a stored program

in a separate memory (the so-called ”von Neumann”

architecture). Turing and Neumann thus formalized the

architecture of the computers from today. Turing raised

the question of the possible intelligence of a machine in his

famous article ”Computing Machinery and Intelligence”

from 1950. In this article, he described a ”game of

imitation” which later was called the ”Turing test”, where

the machine can pass it if a human moderator can not tell

if he is talking to a human or a machine. [8] The field

was in its golden years, people were extremely optimistic,

claiming that within ten years a digital computer will be

the world’s first chess champion and within ten more years

a digital computer will discover and prove an important

new mathematical theorem. [10]

The first AI winter 1974-1980

AI remained fascinating but the popularity of the

technology fell back in the early 1970s. AI would

become subject to critiques and financial setbacks. The

tremendous optimism had raised expectation impossibly

high, which lead to the unfulfillment of the promises. [11]

Combined with the limitations of the hardware at that

time, on top of which came the cutting off from almost all

funding for undirected research into AI, the technology

was lead into its first winter. During the same period,

Marvin Misky harshly criticised perceptrons and therefore

shut down the field of neural nets almost completely for

the next 10 years. [12]

Boom 1980-1987

In the 1980s, a form of AI called expert systems was

adopted by corporations around the world. These expert

systems are programs that can answer questions or

solve problems about a specific domain of knowledge.

An expert system tries to emulate the decision-making

ability of a human expert, hence the name, by going

through many ”if–then” rules. The earliest examples

were developed by Edward Feigenbaum and his students

[13][14]. Expert systems only function in a specific field

of knowledge and all in all were useful, which AI had not

been able to achieve up to this point. [15][16]

During the same years in Japan, the government started

to fund AI with its fifth-generation computer project. The

Japanese Ministry set aside $850 million for the project.

The goal was to create programs and machines that could

do things like translate language and reason like humans.

[17] As a reaction, other countries started to fund new

projects in the field of AI too. In the USA a few companies

came together to form the Microelectronics and Computer

Technology Corporation for funding large projects in the

field of AI. The Alvey project started in the UK which

cost £350 million. [18]

The second AI winter 1987–1993

In a similar pattern as the first winter, the second one

occurred. Expectations were again set much too high

and AI was exposed to financial setbacks. One could

compare it to an economic bubble. Systems for vision and

speech worked very poorly with expert systems because

they contained too many edge cases, which couldn’t be

manually designed around. [19]

AI 1993–2011

Now some of the initial goals of AI could finally be

achieved. May 11th 1997, Deep Blue, a chess-playing

3

computer won a game against the world chess champion

Garry Kasparov [20]. AI’s success started to spread

throughout the technology industry. The overall success

of AI was not due to some revolutionary discovery, but

mostly due to the tremendous increase in the speed and

capacity of computers in the 90s [21]. This dramatic

increase is described by Moore’s law, which states that

the density of transistors on an Integrated Circuit (IC) of

new computers doubles about every two years.

1.2.2 AI today

2011-present

Since the beginning of the 2010s, the computer science

branch of AI has experienced a boom (again). The reason

is mainly the availability of three key resources in AI:

Computing power, the internet and data. The latter

is available in such quantities that it has even gotten a

name: ”Big Data”.

These circumstances also led to significantly increased

budgets for AI R&D in the industry, the results of which

we could observe in the last few years: In 2011, IBMs

Watson won the TV-Show ”Jeopardy”, in 2016, AlphaGO

beat the best human players, in 2020, Agent 57 beat the

human benchmark in all 57 Atari games [22] and the list

of new achievements goes on. [8]

”Who is Who” in the field of AI?

The point of this section is to give a quick overview of the

most important players in the AI Industry regarding the

big technology companies.

Nvidia is a company based in California, USA, that,

among other things, develops Graphics Processing Units

(GPUs). GPUs allow for massively parallel computation,

and therefore, accelerated training of neural networks.

As of Q4 in 2019, Nvidia has a GPU-shipment market

share of ∼70% [23]. [24] Nvidia is mostly fueled by the

video game industry as heavy parallel computing power

is required to run the latest video games.

Google is one of the major players in the AI industry.

Google launched a separate department called ”Google

AI”, that does R&D. Waymo, a company owned

by Google, currently has one of the most advanced

autonomous driving systems. In 2016, Google introduced

the Tensor Processing Unit (TPU) (See chapter 2.2.1).

TPUs are integrated circuits specifically designed for

machine learning with neural networks [25]. Of course,

there is also the ”Google Assistant”, which is a virtual

assistant that can take your language or keyboard input,

and search the internet for answers (amongst other

things). Google has even launched a machine learning

platform called ”Tensorflow”.

At IBM, after breakthroughs like DeepBlue in 1996/1997

and Watson in 2011, ”Project Debater” has been in

development since 2012 and has already debated against

the debating world-champion Harish Natarajan in 2019,

though it has lost that discussion. IBM also has an R&D

department called ”IBM Research” that, amongst other

things, does research at the cutting edge of AI. [26]

Just like Google and Amazon, Microsoft has its own

Cloud Computing platform. It is called ”Microsoft

Azure” and is partly devoted to run heavy AI workloads.

Microsoft is building AI into their existing products such

as Office 365 to make smart recommendations. One of

Microsoft’s initiatives is called ”AI for Good”, with which

it tries to have a positive impact on the present and future

development of AI.

At Amazon, AI is not located in a single department or

office. Instead, AI is distributed and applied throughout

the whole company. The most apparent application is the

recommendation engine on the company’s online shop.

Similar to Google, Amazon developed a virtual assistant

called ”Alexa”. One major advantage for Amazon is its

access to a huge data source from tracking the purchase

behaviour of their clients. [27]

Like Google, Facebook has developed a Machine

Learning library called ”Pytorch”, which is popular

amongst researchers. Facebook also has a research

department called ”Facebook AI Research (FAIR)”,

that does research as well as publish useful tools

like ”Detectron 2”, a platform that includes several

implementations or different computer vision algorithm,

including object detectors like the one of our study. [28]

4

2 Practical Part

This paper includes a practical project with a real-life

application of an AI. This following chapter is devoted

to the documentation of the experiment, as well as some

theoretical explanations on the side to better illustrate

the mathematics behind neural networks. The code is

available under the following GitHub repository: https:

//github.com/FabianAmherd/CNN_ER_FA (see QR-code

below).

2.1 Experiment

The challenge of the labyrinth game in figure 2 is to

roll the ball to a destination without it falling into

one of the holes on the board. The ball is moved

by tilting the labyrinth with two knobs (one on each

axis). Our given task was to develop a neural network

to detect the ball on this labyrinth game for tracking

it. Specifically, we developed a fully convolutional neural

network. With that, the first step for a fully automated

labyrinth game was developed. The data was collected

and labelled by ourselves with a camera and suitable

labelling software.

Figure 2: Setup: Brio labyrinth with RC servo motors,

DAVIS camera and the labelling software.

2.2 Materials and Methods

The following section contains explanations and

documentation to how the task described in 2.1 was

solved. Also, it will cover the theoretical background

of some popular Deep Learning methods or tools.

Equipment

• Camera: The DAVIS camera used is a dual-frame

and event camera [29]. It outputs conventional

frames and a stream of dynamic vision sensor (DVS)

brightness change events [30]. The events can be

collected to variable duration frames to drive a

conventional CNN with sparse frame input, allowing

tracking of fast-moving objects.

• Camera/Labelling Software: To record and

label our data, the project has used jAER software

[31] as well as the program ”After Effects”.

• Labyrinth: The labyrinth used was a ”Brio

Labyrinth Game” [32]. It is fitted with a camera

stand as well as two RC servo motors to control

the table tilt. These servo motors can be

computer-controlled from a computer using the

jAER software.

• Machine Learning tools: The project has used

the open-source machine learning library Pytorch

for developing, training and testing the CNN.

• GPUs: The project has used a CUDA-enabled

NVIDIA GTX 1080 GPU to accelerate the training

of the CNN.

2.2.1 Data

Machine Learning and hence Deep Learning are both

strongly connected to the field of data science. That’s

probably why you don’t hear too little about Al being all

about (Big) Data.

Tensors

All the data that is being processed, passed

in and out of a neural network is represented

using an n-dimensional array of numbers,

called a tensor.

In Machine Learning, a tensor is used as a way to represent

5

data that researchers and programmers use when dealing

with neural networks. A tensor is the generalization of

vectors and matrices and can be n-dimensional. A vector

is just a one-dimensional or rank one tensor and a matrix

a two-dimensional or rank two tensor.

Figure 3: Graphical representation of a tensor with

different ranks and dimensions.

A tensor can be represented by an n-dimensional array

of numbers. Its rank is determined by the number of

basis vectors needed to find a specific component. So if

we had a two-dimensional array, we needed the row and

the column of the component, so that tensor would have

rank 2. The dimension of a tensor is in the case of our

array-representation simply determined by the number of

rows or columns the array has.

Figure 4: Graphical representation of a tensor with

dimension three and rank two (Also called the ”Cauchy

Stress Tensor”).

The same observation (i.e. a ball rolling in a certain

direction) can be represented by different coordinate

systems. Different coordinate systems rely on different

basis vectors, so the components in the mathematical

objects used (i.e. a vector with a magnitude and a

direction to represent the velocity of the ball) also have

to be different to compensate for the change of the basis

vectors to still represent the same observation [33].

The power of Tensors lies in the fact that they ensure

that the observation they represent (in the form of a

combination of a set of basis vectors and components)

stays the same for every observer using any coordinate

system [34]. This means that if you rotate your coordinate

system, the ball keeps rolling ”in the same direction” seen

from an absolute standpoint because our way to represent

an observation does not affect the actual physics going on.

To conclude for our work, Tensors have served as a way

to represent the data that is passed through our neural

network. That is when we first input the images from the

camera, as well when the images are manipulated by the

neural network when processing the data. It was always

a Tensor, as you can see in figure 3.

Dataset Creation

When developing an AI algorithm, a substantial part of

the work goes into preprocessing the data, so the neural

network can learn properly. To create the training set for

the CNN, we needed to go through a couple of steps.

6

After recording videos of the ball rolling around on the

labyrinth (table tilted by hand), we had to label the

video. We could do that by importing and activating the

”DvsSliceAviWriter” filter in the jAER software. Once it

is activated, there is a submenu called ”TargetLabeler”,

which lets you use your mouse to set the labels while

watching the recorded video. Having done that, we used

the jAER software to output a .avi video file with the

recorded video, plus a .txt text file that contained the

corresponding label locations/coordinates for every frame

of the video that we had applied a label to using the mouse

on the beforehand. To accelerate this process we made use

of the program ”After Effects”, which already contains a

tracker for different kinds of objects. With that, we could

label our data faster and more accurately. In total, our

dataset reached a size of about 30’000 frames.

Since the video output of the DAVIS camera had the

classical frames (APS frames) on the red channel and

the event frames (DVS frames) on the green channel

(blue is empty), the next step was to write a python

script that could both extract all the frames from the

.avi-formatted video plus separate the APS and DVS

frames and save them into separate folders as .png images.

With that, we have prepared the input to our CNN

properly.

Since our project uses a ”Supervised Learning” approach

(see 1.1.3), we have rate the output of the neural network

automatically for the CNN to be able to continually

improve its performance. This is where the labels

come into play. The task now was to use the location

information of the previously described .txt file to create

so-called heatmaps which represent the ideal output we

want from our neural network for each picture. By taking

the coordinates of the .txt files and putting a Gaussian

distribution around them, we could create the desired

heatmaps. The purpose of these heatmaps is to help us

tell the CNN how good or bad it is currently doing at

telling us the location of the ball on the labyrinth, by

providing the perfect solution. How we solved the task of

rating the CNN as well as an example of a label is covered

in 2.2.3 .

Once we had this collection of examples and their

corresponding solutions prepared, we could start

developing the architecture of the neural network itself.

Data Augmentation

Data Augmentation is a technique used in

Deep Learning to artificially increase the

amount of data in the dataset, as well as to

increase the performance and robustness of the

neural network.

The technique’s trick is to artificially increase the number

of learning examples in the dataset by slightly modifying

existing samples. With images you could, for example,

rotate it, adjust the brightness, change the virtual lighting

by shading the image, add fake highlight reflections,

translate it, crop it, etc. as you can see below in figure 5.

The three square images below have all been augmented.

They can now all be used as a separate training example

apart from the original image, thus multiplying the size of

the dataset! You could of course implement more different

forms of image augmentation, but transformations other

than rotating, as well as adjusting the brightness and

contrast were sufficient for good results of our study.

Figure 5: Examples of image augmentation used in our

project.

Our project used the technique of Data Augmentation

with the intent to make the neural network more robust

against different lighting conditions, slight rotations of

the labyrinth etc. but also improve the CNNs accuracy

by letting it train on a larger dataset. It also helped

to increase the performance of the CNN under real-life

conditions, because they have been simulated and trained

on before.

2.2.2 Network Architecture

How does an ANN work?

An Artificial Neural Network (ANN) is a form

of AI, whose structure is strongly inspired by

the human brain.

7

In this chapter, we will have a closer look at how a neural

network works. After that, we present the architecture of

the CNN we have developed for the practical project.

The first type of a neural network we will look at

is the most simple form. It is called a ”Dense

Neural Network (DNN)” or ”Fully-connected Neural

Network”. It consists of thousands to millions of

nodes, that are organized into different layers. Each

node is connected to all nodes in the previous layer

as well as in the following layer. So there are even

many more connections than there are nodes. This is

why the individual layers are called ”Dense Layers” or

”Fully Connected Layers”, the latter of which is often

abbreviated with ”FC” [35].

Figure 6 shows a simplified DNN with fewer nodes and

connections. The first layer of a neural network, in

general, is called the ”input layer” because this is where

we feed in our data. The following layers are called

”hidden layers” because we rarely access them directly

and in most cases also don’t exactly know what these

layers represent logically. The last layer is the ”output

layer”, this is what we receive back as a result of our

neural network.

Figure 6: Dense Neural Network.

Let’s have a look at the mathematics behind it.

A single neuron has the following structure (see figure 7):

It takes a set of inputs {x1, · · · , xi, · · · , xn}, where n is

the number of neurons it is connected to in the previous

layer. In figure 7, n = 2. Each connection between two

neurons has a weight wi associated with it. So before

the inputs enter the neuron, they are multiplied by the

weight that’s associated with them.

xi → xi ∗ wi

In the next step, we sum all of the weighted inputs and

add a bias b to it. The bias is a real number that helps

to control how hard it is for a neuron to get excited (i.e.

to output a large number to the next layer).

n∑
i=1

(xi ∗ wi) + b

Figure 7: The structure of a neuron.

Figure 8: A Graph of the sigmoid

activation function.

As the last step, an activation function is used to bring

our weighted sum into a predictable form. One function

that is often used is called the ”sigmoid function”, denoted

with the symbol σ. It compresses every input in the range

between 0 and 1.

σ(z) =
1

1 + e−z

lim
z→+∞

σ(z) = 1

lim
z→−∞

σ(z) = 0

So finally, we can write the output y of our neuron

as:

y =
1

1 + exp (−
∑n
i=1(xi ∗ wi)− b)

8

For our network, the ReLU (Rectified Linear Unit)

activation function was used, as this is a commonly used

activation function for CNNs which was first inspired by

observations of real cortical neurons in the laboratory of

the Institute of Neuroinformatics at UZH/ETH Zurich

[36]. The ReLU activation function is easy to compute

and helps against the ”vanishing gradient” problem, in

which the gradient of the loss becomes extremely small

and thus the learning progress starts to stall (more on that

in chapter 2.2.4). The ReLU activation function sets every

negative input to zero and leaves every positive input as

it is. It is mathematically expressed as:

ReLU(x) = max(0, x)

Figure 9: Graph of ReLU Activation function.

We now know how data gets fed through forward to

produce our result. But how does a neural network

learn? After outputting the result, the neural network

gets feedback from a ”Loss Function” which we will look

at in chapter 2.2.3 . Once it knows how good or bad

the produced result was, it uses two techniques called

”Backpropagation” and ”Gradient Descent” (See chapter

2.2.4) to do better next time.

Convolutional Neural Networks

A relatively newer form of a neural network, whose

structure is inspired by the visual cortex of the human

brain, is called a Convolutional Neural Network (CNN)

or ”ConvNet”. As a consequence of their structural

origin, the individual ”neurons” in this type of neural net

correspond to certain areas of the input image, known

as the ”Receptive Field” when talking about the visual

system of humans. One of many differences to a DNN is

that a CNN can capture the spatial information contained

in an image fed into it. This fact makes CNNs excel at

visual tasks such as object recognition/localization, which

is why a CNN has also been used in the practical part of

this paper.

A typical CNN consists of two parts: First, we have a

few ”Convolutional Layers”, whose job it is to extract

the features of the input image and bring them into a

form that is easier to process without losing the critical

features. This information is then passed through a few

”Fully Connected Layers”, whose job it is to classify the

received information into a category (See figure 10) [37].

A single ”Convolutional Layer (ConvLayer)” consists of

a set of filters or kernels, matrices that contain the

”learnable” weights (The weights are what gets adjusted

when the feature extractor learns). These filters are

much smaller than the input image (See square on the

image on the left side in figure 10), so they propagate

over the whole image, step by step, starting at the top

left, ending at the bottom right of the image. After

each step, the weights are multiplied with the underlying

pixel-activations in that part of the image (See figure 11).

The results of each step are then put together to form

a new image. This output image is then used as input

to the next ConvLayer. Depending on the filter weights,

different aspects of the image are enhanced. In figure 12,

the patterns the individual filters of a CNN look for were

visualized. In the left rectangle of figure 12, we can see

that edges at different angles and certain colors are being

enhanced. Moving to the right, we can see the learned

filters from following ConvLayers, which are a little more

complex patterns, formed out of the simple edges and

colours to the left. This goes on for the rest of the layers.

The patterns the filters look for will change depending on

what type of images the CNN was trained on.

Figure 11: Example of a kernel.

9

Figure 10: Example of a CNN.

Figure 12: Different filter patterns.

In figure 10, besides the ConvLayers and the Fully

Connected Layers, we can also see so-called ”Pooling

Layers”. Two types of pooling operations often

used are called ”average-pooling” and ”max-pooling”.

Average-pooling outputs the average pixel-activation of

the current set of pixels it is applied to. The max-pooling

operation outputs the maximum pixel-activation out of

the patch it is applied to. These layers help to reduce

the size of the input, as well as the amount of redundant

information.

2.2.3 Loss Function

When training a neural network, you generally need to

tell it in some way how it is doing in terms of delivering

the output that you want it to. Here we can use a ”Loss

Function” (or also ”Cost Function”). It is a function that

takes two inputs: one is the output of the ANN, the other

is a label that shows the desired output. It then in some

way computes a ”difference” between the two and outputs

a number, that gets fed back into the ANN and is the

origin for the learning process. The higher the number,

the more different the output is from the desired output.

This means that the lower this number (called ”Loss” or

”Cost”), the better the ANN is performing.

The heatmaps we are using to represent our labels and

network output are, again, just a 2D-matrix of numbers,

in which every number stands for the activation of a pixel.

In figure 14, there is a typical input image (that we got

by extracting the red channel of the DAVIS video feed

and converting it to black and white frames). In figure

15, you can see a typical label picked out of the training

dataset. These two figures are a input/label pair, which

means that at the same coordinates of the white blob on

the label, the cueball is at on the input image.

Figure 14: Example of a frame used for training.

Figure 15: Example of a label used for training.

Now, at the beginning of training, the CNN has no clue

what it should do and all the weights are initialised

randomly. The output heatmap looks something like what

you can see in figure 16. Remember, the desired output

10

would be something like in figure 15. Also note that the

activations are very small, as you can see on the scale to

the right side of the heatmap. The reason for that is the

architecture of our CNN, specifically the last layer, as you

can see in the last part of figure 21 . The whole heatmap

can be looked at as a sort of ”probability distribution” on

where the CNN thinks the ball is.

Figure 16: Output of our CNN at an early training stage.

Now we need a way to tell the network that this is not

what we want. We do it by feeding back a big number

to the neural network that stands for a big difference

to our desired output. When dealing with images, the

most simple and obvious way to calculate the difference

between two pictures is to iterate over every pixel-position

of the images and calculate the difference between the two

pixel-values that are at the same location. You can then

add up all those numbers or take the mean and you have

the difference between those two pictures expressed in the

form of a number.

The way just described is often used (also in this project)

and it is called ”L1-Loss”. It can be expressed as the

sum of absolute differences or mathematically as

Loss =

n∑
i=0

|aL − aO|

where the activation of a pixel in the label image

is denoted by aL, aO for the output image,

respectively.

Modified versions of L1-Loss were put to the test during

the development of CueNet (the CNN developed in this

project), hoping it would learn faster, but none of the

approaches was superior to the classical L1-Loss.

2.2.4 Training the Network

Gradient Descent

After preprocessing the data, choosing the architecture of

the network and declaring the loss function it is time to

train it. In the beginning, all the weights and biases are

randomly initialised. The network thus creates random

outputs. With the loss function, you can measure how

well the network is performing on a given input which

alone doesn’t get us anywhere. We have to find a way

to tell the network how it should change its weights

and biases so it can increase its performance and thus

”learn”.

To illustrate how this can be done, we will look at a

simple Loss Function with just two inputs and one output

expressed as:

Loss = L(x, y)

If we plot the input on the x- and y-axis and the output

on the z-axis we could get the following graph:

Figure 17: 3D Plot of an example Loss Function

Our goal is to find the direction in this input space which

decreases the loss most quickly, because the lower the

loss, the better our network performs. The gradient of

a function gives you a gradient vector whose direction

points in the direction of steepest ascent. If we take the

negative of the gradient vector, we get the direction of

quickest descent. The gradient is calculated by packing

all the partial derivative information of our loss function

together.

∇L(x, y) =

∂f
∂x

∂f
∂y

To find a local minimum we have to compute the gradient

over and over while taking small steps in the inversed

11

direction of the gradient vector. This process is called

Gradient Descent and also applies to neural networks,

many of which create input spaces with millions of

dimensions. There are many ways to improve this process,

such as ”Stochastic Gradient Descent (SGD)”, which we

won’t discuss here in detail.

Figure 18: Gradient Descent

For us to take small steps on the plane the loss function

needs to have a continuous output. This is the reason why

artificial neurons have continuous ranging activations,

unlike biological neurons which activations behave in a

binary way.

Now that we know how to descend the valley of our

loss function if we know the perfect direction, we

need to figure out how to find that ”direction” in the

multi-million-dimensional input space of our loss function

each step. This is where the Backpropagation algorithm

comes into play.

Backpropagation

Calculating the gradient of a neural network is a lot

harder as there are many more parameters we can

change and their impact on the final loss function is

dependent on changes to other parameters. The core of

Backpropagation is an expression for the partial derivative

∂L/∂w of the loss function L with respect to any weight

w or bias b in the network. This expression tells us how

fast the loss changes when we shift the weights and biases.

Going further we will rely on understanding the following

notation which lets us refer to weights and biases in the

network in an easy way. wljk will be used to denote the

weight for the connection from the kth neuron in the

(l − 1)th layer to the jth neuron in the lth layer. As

an example, we will look at the indicated weight w in

figure 19. The weight w is the connection between the

first neuron in the second layer to the second neuron in

the third layer of the network. Therefore the weight w is

notated as w3
21.

Figure 19: Example network to illustrate notation.

To refer to the network’s biases and activations we use a

similar notation. For the bias of the jth neuron in the lth

layer, we use blj . And for the activation of the jth neuron

in the lth layer, we use alj . With that the indicated bias b

and activation a in the figure below are notated as b12 and

a32.

Figure 20: Example network to illustrate notation.

With these notations, the activation alj is related to

the activations in the (l − 1)th layer by the following

equation:

alj = σ
(∑

k

wljka
l−1
k + blj

)
where the sum is above all neurons k in the (l−1)th layer.

The sigmoid activation function is just used as an example

and can be exchanged with any activation function.

We will now rewrite this expression in a matrix form

to make our expression more readable and intuitively

understandable. We define a weight matrix wl for each

layer l where the entries of the weight matrix are the

weights connecting to the lth layer of neurons, that is,

the entry in the jth row kth column is wljk. Analogously

12

the bias vector is defined for each layer l by bl and the

activation vector by al. The components of the bias

and activation vectors are the values blj or alj for each

neuron in the lth layer. Finally, we must vectorize our

activation function σ. We do this by applying the function

to every element in a vector v and use the notation σ(v)

to denote this elementwise application of a function. We

can now rewrite our last equation in a compact vectorized

form

al = σ(wlal−1 + bl).

Below is the written out activation vector of the 3rd layer

of the example network in figure 20.

[
a31
a32

]
= σ

([
w3

11 w3
12 w3

13

w3
21 w3

22 w3
23

]
×

a21a22
a23

+

[
b31
b32

])

When we compute al with our equation above we compute

the intermediate quantity zl = wlal−1 + bl, which is the

weighted input to the neurons in layer l, this zl will

be useful later. With this, our equation above can be

rewritten as al = σ(zl).

To use Backpropagation we must make two main

assumptions about the shape of our loss function. To

state these assumptions we will look at the quadratic lost

function as an example, which has the form

L =
1

2n

∑
x

‖y(x)− aL(x)‖2.

where n is the total amount of training samples. The

sum is over all the samples in the training set, y(x) is

the corresponding desired output. L is the number of

layers in the network and aL(x) is the vector of the output

activations from the network for the given input x.

The first assumption we have to make about our loss

function L is that the loss function can be written as

an average L = 1
n

∑
x Lx over loss functions Lx for the

individual training examples x. For our loss function, this

is the case, as the loss for a single training example equals

Lx = 1
2‖y − a

L‖2.

The reason for this is that we try to approximate the

partial derivatives δL/δw and δL/δb by calculating the

partial derivatives δLx/δw and δLx/δb for each training

example x and average it. With that in mind, we will

remove the subscript x and write the loss Lx as L.

The second assumption about our loss function is that it

can be rewritten as a function that takes the output of our

network as the input. This applies to our loss function

L as it can be written for a single training example x

as

L =
1

2
‖y − aL‖2=

1

2

∑
j

(yj − aLj)2

and by that is a function of the output activations of

our network. One may wonder why we do not take

the loss L as a function of the desired output y or the

training example x. This is because x and y are fixed

parameters.

We will now introduce the intermediate quantity δlj ,

which we will call the error in the jth neuron in the

lth layer to ultimately compute δL/δwljk and δL/δbljk.

Backpropagation will enable us to compute this error

δlj and then will relate δlj to δL/δwljk and δL/δbljk.

To elucidate this, imagine an error which lies in the

jth neuron in the layer l. When the input enters the

neuron, the error adds a little change ∆zlj to the neuron’s

weighted input, which changes the neuron’s output σ(zlj)

to σ(zlj + ∆zlj). We must now find a ∆zlj that minimizes

the loss. If δL
δzlj

is large then we can lower the loss a

lot by choosing ∆zlj to have the opposite sign to δL
δzlj

.

Reciprocally if δL
δzlj

is small making changes to ∆zlj won’t

alter the loss by much. As a consequence, we can already

tell which neuron is near the desired state. We define this

error δlj in the jth neuron and lth layer by

δlj =
δL

δzlj
.

As before we will use δl as the vector of errors in layer l

and equals

δLj =
δL

δaLj
σ′(zLj). (1)

for the output layer.

This intuitively makes sense as the first term δL/δaLj
shows us how fast the loss is changing as a function of

the jth output activation. If L doesn’t depend much on

the given output by the jth neuron then δLj will be small.

The second term σ′(zLj) shows us how fast the activation

function σ changes at zLj .

Equation 1 is easily computed as zLj will already be

computed when passing the training data through the

13

network and it’s only a small addition to compute σ′(zLj).

The form of δL/δaLj will be dependent on the form of our

loss function. For example, when using the already known

quadratic loss function L = 1
2

∑
j(yj − aLj)2 it would be

δL/δaLj = (aLj − yj) which isn’t hard to compute.

While equation 1 is a componentwise expression for δL we

want a matrix-based form which we get by rewriting the

equation as

δL = ∇aL� σ′(zL). (2)

∇aL is a vector whose components are the partial

derivatives δL/δaLj and thus the rate of change of L with

respect to the output neurons. We will use these equations

interchangeably. Our example quadratic loss function

equals ∇aL = (aL − y) and the fully matrix-based form

can be written as

δL = (aL − y)� σ′(zL).

The next equation we will look at will be

δl = ((wl+1)T δl+1)� σ′(zl). (3)

With this equation, we can calculate the error δl in

relation to the error of the next layer δl+1. By applying

the transpose weight matrix (wl+1)T we are moving the

error back through the network. By taking the Hadamard

product �σ′(zl) we move the error backwards through

the activation function, leaving behind the error δl in the

weighted input in layer l. We are propagating backwards

through the network which is the reason it is called

Backpropagation.

Now with the combination of equation 2 and 3, we can

compute the error δl for any layer in the network. We

start by calculating δL with the 2nd equation, then use

the 3rd equation to compute δl−1 over and over for all

remaining layers of the network.

The next equation we will introduce lets us calculate the

rate of change of the loss with respect to any bias in the

network as we know how to calculate δlj .

∂L

∂blj
= δlj . (4)

Equation 5 will enable us to calculate the rate of change of

the loss with respect to any weight in the network.

∂L

∂wljk
= al−1k δlj . (5)

As we know how we can calculate the terms of the

quantities δl and al−1 we can now compute equation

5.

The Backpropagation algorithm will go through five steps,

the first being setting the corresponding activation a1 for

the input layer. The next step is to feedforward the input

activation. For each l − L we compute zl = wlal−1 + bl

and al = σ(zl). The third step is to compute the error

vector for the last layer L with δL = ∇aL� σ′(zL). The

fourth step is to backpropagate the error back through

the network by computing δl = ((wl+1)T δl+1)�σ′(zl) for

all the layers. The last step is to calculate the gradient of

the loss function with ∂L
∂wl

jk

= al−1k δlj ,
∂L
∂blj

= δlj and change

the weights and biases accordingly.

As we have already discussed we calculate the gradient

for one single training example a time. This is

because calculating the gradient for all the examples

would take too much memory and therefore increase the

computational cost. We combine Backpropagation with a

learning algorithm such as Stochastic Gradient Descent,

in which we compute the gradient for a chosen batch-size

m and take a learning step based on the gradient of this

batch, by doing this we decrease the accuracy but can

learn a lot faster. [38][39]

Training phases

In our code, we define two sections: the training loop and

the validation loop. In the first step, we go through the

training loop where we calculate the partial derivatives

for each training example and update the weights and

biases according to the calculated gradient which gets

multiplied by a learning rate α which lets us adjust the

steps the network takes so that we don’t jump over local

minima. After we went through all the training data we

jump to the validation loop in which we calculate the

loss for each example in the validation set and average

it. This time we won’t change the weights and biases as

we want to check if the network can generalize what it

has learned from the training set. These two phases will

be repeated multiple times in so-called epochs, which is a

pass over all the training data. The loop won’t stop until

the validation loss does not decrease anymore. At this

point, the network starts to overfit, which means that it

has started to simply memorize the data in the training

14

set and doesn’t generalize well. In figure 23 you can see

how both the training loss and validation loss behaved

when going through 20 epochs in our experiment.

2.3 Analysis

CueNet consists of an abridged version of the

VGG16 convolutional neural network with a subsequent

deconvolutional neural network. The 240 x 180-pixel

input with a depth of 3 is passed through the VGG16

part, which reaches a depth of 256 and a resolution of 60

x 45 in the middle of the CueNet. In the DeconvNet part,

upscaling layers are used to recover the dimensionality

loss from the max-pooling layers. Due to the Softmax

layer as the last layer of the network, the output produces

a probability heatmap for the ball’s location where each

pixel carries a probability for the ball being there. All

these probabilities sum up to 1, as the ball has to

be somewhere on the board. The coordinates of the

cueball equal the coordinates of the activation-peak on the

heatmap. Our input has a depth of 3 channels because we

want to give 3 consecutive images to CueNet, hoping that

it can learn something about the behaviour of a ball, e.g.

a ball cannot jump from one side of the labyrinth to the

other in consecutive images. For comparison purposes,

we have created an identical version of the CueNet, which

can only use one image as an input. [40]

Our testing set is used to evaluate the performance of

the CueNet, distinguishing between CueNet V1, which

takes one image as an input and CueNet V2, which takes

three consecutive images as an input. The rest of the

dataset is separated into a training set and a validation

set, depending on the true position of the ball (see figure

22).

Layer Filter Size Depth Padding Stride Activation Fn

Conv1 3 x 3 64 1 x 1 1 ReLU + BN

Conv2 3 x 3 64 1 x 1 1 ReLU + BN

Pool1 2 x 2 max pooling, Stride = 2, Padding = 0

Conv3 3 x 3 128 1 x 1 1 ReLU + BN

Conv4 3 x 3 128 1 x 1 1 ReLU + BN

Pool2 2 x 2 max pooling, Stride = 2, Padding = 0

Conv5 3 x 3 256 1 x 1 1 ReLU + BN

Conv6 3 x 3 256 1 x 1 1 ReLU + BN

Conv7 3 x 3 256 1 x 1 1 ReLU + BN

UpS1 2 x 2 upsampling

Conv8 3 x 3 128 1 x 1 1 ReLU + BN

Conv9 3 x 3 128 1 x 1 1 ReLU + BN

Conv10 3 x 3 128 1 x 1 1 ReLU + BN

UpS2 2 x 2 upsampling

Conv11 3 x 3 64 1 x 1 1 ReLU + BN

Conv12 3 x 3 64 1 x 1 1 ReLU + BN

Conv13 3 x 3 64 1 x 1 1 ReLU + BN

Softmax

Table 1: Parameters of CueNet.

Figure 22: Training Set, Validation Set.

This is to ensure that CueNet generalizes and does not

overfit. By separating the training data and validation

data by the true location of the ball we make sure that

there are not any nearly identical images in the training

and validation set. If you were to split your sets by

randomly shuffling your data or by time, there could

be frames in the training and validation that are almost

identical, which leads to the network not generalizing but

rather memorizing the frames. To optimize the weight

and biases, the Adam optimizer was used. We set the

number of epochs to 20 to ensure that we find the least

validation loss. The entire training using a batch size of

1 took about 8 hours.

15

Figure 21: CueNet V2: Conv Layer, ReLU, MaxPooling Layer, Upsampling Layer, Softmax Layer

Figure 23: Training Loss vs Validation Loss.

CueNet is trained to produce the ”correct” heatmap

output. But to allow us to quantify the accuracy of

CueNet, we define a tolerance range in which the output

can lie and still be classified as correct. Since the ball is

about 8 pixels wide, the tolerance range is 4 pixels around

the center of the real position of the ball. The peak of the

heatmap from the output of CueNet has to be in this area

to be counted as a correct classification. The Positioning

Error (PE) is the distance between both centers in pixels.

The distribution of the PE is shown in figure 25.

Figure 24: PE distribution of the two versions of CueNet.

The x-axis of the plot shows us the PE and the y-axis the

fraction of the occurrences for this PE. This distribution

shows that 99.6% of the classifications of CueNet V1 are

in our set tolerance range of PE <= 4 and 99.8% of the

classifications of CueNet V2 respectively.

Apart from the standard testing set, we have created a

special dataset called ”Heavy Test” to push CueNet to its

limits. The recordings of ”Heavy Test” were made in very

poor lighting conditions, as a lamp was rotated around the

labyrinth at a steep angle. This resulted in very strong

and long shadows on the labyrinth, which should lead to

a more difficult classification task. In addition to this,

the view of the board was alternately covered with hands

without covering the ball, which should show that CueNet

can ignore distractions.

16

Figure 25: PE distribution of the two versions of CueNet

on a more difficult testing set.

In this benchmark CueNet V1 achieved 92.9% accuracy

with our given tolerance range of PE <= 4 and CueNet

V2 achieved an accuracy of 96.4%. When comparing the

mistakes both networks made you can see that CueNet V1

often loses track of the ball completely and thus labels the

ball as somewhere completely else. By contrast, CueNet

V2 locates the ball just barely outside of the tolerance

range. We think that CueNet V2 is more robust because

it can rely on the two older images and can therefore

approximate the position of the ball with the learned

trajectory patterns. In addition, it can compare changes

between the consecutive images, making it easier to locate

the ball since the ball is the fastest moving object. The

potential tradeoff for CueNetV2’s higher accuracy and

robustness is higher computational cost, which could be

important for the robotics control.

As the last test, we combined some of the footage of

our ”Heavy Test” set to test the multi-object tracking

capabilities of our network. Despite never having trained

this, both versions of CueNet can track two objects

simultaneously with sufficient result. If we had trained

this we are confident that simultaneous tracking would

not have been a problem since the last layer is a softmax

layer and can easily split the probability distribution and

thus track multiple objects.

Figure 26: Output of CueNet tracking two balls

simultaneously, where the heatmap output in red is

overlaid over the APS image.

Conclusion

In the context of this work, we developed a Fully

Convolutional Neural Network named CueNet that can

effectively detect and track the cueball on the used

labyrinth. We also found that CueNet V2 outperforms

CueNet V1, which indicates that using consecutive images

as an input to the CNN increases its accuracy overall

and especially in difficult situations. Additionally, both

versions of CueNet could generalize well and thus were

able to track multiple objects simultaneously, despite

never having been trained on tracking more than one

object. By extensively testing CueNet in difficult

conditions, we could confirm the robustness/reliability of

the algorithm under real-life conditions.

3 Discussion

3.1 Applications of AI

In recent years, AI has found many new applications in

a wide range of disciplines. In this section, we will cover

some in which AI has made significant advances.

Medicine

Through the vast amount of generated and stored data

in healthcare, AI today has found use in diagnosis,

drug development and the creation of personalized

treatments.

Deep Learning algorithms assist doctors in the evaluation

of CT scans, MRI images, skin images etc. for the

diagnosis of all kinds of diseases. Some of the algorithms

17

can achieve accuracy of up to 99% which is almost as

good as a professional doctor [41]. The immense benefit

of these algorithms is their low cost and speed. They can

draw conclusions in seconds and the results can be shared

across the world at the speed of light. This means that

even people in poorer regions can receive a professional

diagnosis for less money. [42]

When designing the treatment for a patient there are

many variables one has to take into account. Small

differences in drug doses and treatment schedules can lead

to different reactions from different patients. With the

help of machine learning, doctors can find correlations

between the patient’s characteristics and the patient’s

response to a particular treatment. This helps with

choosing the right treatment and thus maximizing the

chance of the patient’s survival. [42]

Finance

The use of AI in banking dates back to 1987 where the

Security Pacific National Bank in the US started using

an expert system for the detection of unauthorized use

of debit cards [43]. Today machine learning is used

to reduce the chance of fraud and financial crimes by

monitoring behavioural patterns for anomalies and flag

them for human review [44].

In the world of trading, there is the never-ending

competition of coming up with the best mathematical

model to predict the future of the stock market.

High-frequency trading represents one of the

fastest-growing sectors in financial trading and of course,

AI was found to be useful with this kind of problem. By

2010, 60% of all trades were executed by computers of

which most work with ”simple” algorithms (Algorithmic

Trading). Those algorithms can make tens of thousands of

trades per second. Machine Learning, on the other hand,

working a lot slower, can learn sophisticated patterns from

past data that could indicate the next financial crisis, a

bullish/bearish trend etc. Many banks, funds and trading

firms have their entire portfolios managed purely by AI

systems [45]. There are ETFs (Exchange Traded Funds)

whose portfolios are built with the help AI like ARK’s

Industrial Innovation ETF. Starting this year it gained

69.60% compared to the average yearly 10% that the S&P

500 gains, which is quite an accomplishment. [46].

Transportation

We are on the verge of a revolution in the automotive

industry, there are currently over 40 companies developing

self-driving cars using AI. Tesla and even tech giants like

Apple and Google are all developing their own systems

[47], of which Tesla’s is the most advanced so far. The

advantage of Tesla lies in its possession of a huge amount

of real-life data. Their entire fleet collects data while

driving and sends it back to Tesla, where they can train

their neural network with it. Driving automation is

subdivided into six levels (See figure 27), of which we have

only reached level 2 on commercial products up to this

day.

Tesla has already demonstrated a level 5 system, but

mainstream production of anything higher than level 2

has yet to come. The reason for this is partially the

lack of technological capability but also the ethical and

political questions that go along with autonomous driving.

Another problem of autonomous systems is that they can

be exploited and thus serious accidents could occur. In

chapter 3.2.1 we will talk more about the reliability and

potential safety exploits of AI.

Computer Vision

Image restoration, object recognition, video tracking,

scene reconstruction, motion estimation are all

sub-domains of computer vision [48]. The practical part of

this paper goes into object recognition and video tracking,

as we are trying to track a cueball from a continuous

stream of frames. Object tracking and recognition are

crucial for autonomous systems because they are built

upon them. For them to be able to make decisions, they

first have to see. In figure 28, an algorithm tracks and

recognizes different kinds of vehicles.

Figure 28: Tracking of vehicle movement using Artificial

Intelligence.

18

Figure 27: Levels of Vehicle Autonomy.

In image restoration, the goal is to remove unwanted noise

from pictures or add missing details. This is typically

done by feeding the network with millions of images until

it can fill the missing content considering the other content

of the image. [49]

Figure 29: Image restoration using Artificial Intelligence.

When does applying AI make sense?

Implementing an AI system makes sense when working

with large amounts of data. In this large amount of

data, the algorithm can approximate a generalization

for a problem that can handle data which it has never

seen before. Getting clean, balanced and unbiased data

can sometimes be very difficult, though. The Return

on Investment (ROI) is a value that is crucial when

deciding over the implementation of an AI system. This

means weighing up the cost and complexity of the

implementation versus the benefit the AI can give while

operating. Simpler tasks like for example regulating the

heating of a house can simply be done autonomously

without an AI operating in the background - the ROI of

the AI solution might not be worthwhile here. Regarding

more complex tasks, such as autonomous driving, the ROI

gets dramatically better. Solving this task without the

help of AI would seem infeasible.

Most tasks that can be completed with a data-defined

pattern can be done with AI. Depending on the difficulty

of the pattern it tries to approximate, it may be more

efficient to manually program in all the rules for each case.

As AI continues to advance, gathering sufficient data and

implementing the algorithm is going to become simpler

and simpler from a business perspective. The ROI for

AI solutions will continue to ascent and AI will make its

entrance into more and more sectors.

3.2 Challenges regarding AI

3.2.1 Reliability

The further AI advances, the more complex and

important tasks it will be able to take on. More important

tasks also mean greater responsibility, especially as

an increasing number of humans rely on that system.

Therefore, technical AI safety becomes increasingly

more important. While being able to empirically prove

the accuracy or performance of an AI system in the lab,

real-world scenarios always hold an unforeseen situation.

This effect is called ”data shift” and is an important

problem to regard when trying to build a reliable AI

system.

The technical safety of an AI can be divided into three

areas: specification, robustness and assurance. Defining

the right purpose of the system and trying hard to avoid

ambiguities and side-effects caused by the way the system

is designed is what falls into the area of specification.

The robustness of a system is measured by its ability to

withstand unwanted interference. This can either be done

19

by proper training (see practical part of this work) or

by error-correction and fallback mechanisms for recovery.

The last area, assurance, is mainly about monitoring (see

next section) and checking the system activity while in

production. [50]

3.2.2 Interpretability

To be able to use the power of AI for important decisions

without blindly relying on it, we need to know based on

what factors the AI decides.

Today, we mostly don’t know how to interpret/explain

the reasoning behind complex AI systems. That is

why one of the problems we will probably have to

work on is the interpretability of the algorithms. The

term ”Explainable AI (XAI)” refers to AI systems

that possess some amount of ”transparency”, which

means that humans can understand in at least some

detail, why the algorithm came to the solution it did

[51]. The challenge of creating XAI is to improve the

”transparency” of the model to a level where it can prove

useful to humans without compromising the performance

of the model too much. Also, an ”effective explanation”

of the model can vary between different industries and

users of the AI system. A developer, for example, would

rather like to know possible areas of improvements, while

a judge would rather want to know if the AI is making

fair decisions [52].

3.2.3 Moral Dilemma

”Moral dilemmas are situations in which the

decision-maker must consider two or more moral values

or duties but can only honour one of them; thus, the

individual will violate at least one important moral

concern, regardless of the decision.” [53]. In moral

dilemmas, because all choices are bad, deciding is difficult

and relies heavily on personal biases. The question

regarding AI is the following: Should we give AI systems

the responsibility of making ethical decisions? How do

we determine in which way an AI system reacts to moral

dilemmas? To feel how difficult deciding becomes in

dilemma situations, visit https://www.moralmachine.

net/ (see QR-code below).

As you’ve probably seen, it can sometimes be very

difficult, and as self-driving cars or other AI systems

carry more responsibility, how we solve such situations

becomes more important.

Another stage where moral questions have to be answered

is when AI becomes sentient or even self-aware. When

AI starts to be conscious, is it correct to just unplug it

or delete it? Or even further, should the AI system have

human or civil rights?

There are still a lot more questions regarding morality.

For example, should AI be banned for war purposes

like chemical and biological weapons since the Geneva

Protocol? Is it morally reprehensible to further develop AI

systems regarding all the future threats? We cannot and

don’t want to try to give any answers to these questions,

but draw attention to the fact that they exist.

3.2.4 Energy and Computing Power Demand

In 2016, when AlphaGo defeated Lee Sedol in the game

of Go, it used 1202 CPUs and 176 GPUs to compute its

next move. To operate, it consumed about 1 megawatt,

which, compared to Lee Sedol, is about 50’000 times more

power [54].

Using such big amounts of energy is impractical, expensive

and environmentally harmful. There is a general rule that

the more complex the patterns to find or the task to solve,

the more complex and deep your network should be. But

this also comes at the cost of more computations and

energy needed.

There have already been developed techniques to

20

drastically reduce the size/”weight” of neural networks

while keeping up the good performance. One of the

techniques is called ”Pruning”, in which the researcher

iteratively removes connections between neurons and

retrains the network afterwards to achieve a minimum

level of redundant connections in the network [55].

Efficiency gains can also be achieved through tailored

hardware, such as Google’s TPUs (as explained in 1.2.2

under paragraph ”Google”), as well as in the specialized

hardware architectures developed all around the world,

including at ETH Zurich and UZH.

3.3 Outlook

There are still many unresolved questions regarding the

technology of AI. This is where we would like to leave

the floor to the experts in the field, which is why we have

conducted an interview with Prof. Dr. Martin Vechev,

who leads the Secure, Reliable, and Intelligent Systems

Lab (SRI) at ETH Zurich.

Q: Should AI be regulated more/less or is it just right and

why? Are we on the way to losing control over AI? What

are possible disadvantages of AI?

A: I believe we are far away from losing control over AI.

While a scenario where an Artificial General Intelligence

starts to improve itself in a runaway fashion is a popular

topic for Science Fiction novels and might become a

concern in the far future, we are still very far away

from such a form of AI. Therefore, I think the time to

regulate AI more strictly has not yet come, as we simply

do not yet know what the AI systems of the future will

look like and should avoid stifling innovation by overly

strict regulations. When talking about individual tasks

where AI is now used instead of other systems, it might

make sense to generally regulate how decisions are made.

I don’t see a reason to apply such regulations only to

AI Systems and not the decision making system used

before. AI is like any tool, in that it has to be used

correctly to produce good results. A danger might be

that it is harder to assess whether it is working well.

The performance might vary significantly depending on

the circumstances. For example, if the dataset used to

train and evaluate a model is heavily biased in the same

way, this will go undetected during testing but might

have unforeseen consequences once it gets applied in a

real-world environment. Therefore it is important to

be careful and diligent when implementing AI solutions

starting with the gathering of data.

Q: In what ways are AI systems exploitable and what can

we do against it? (Adversarial attacks etc.)

A: AI systems are exploitable in several ways. The

training data might be biased, intentionally or not,

manipulated data can be injected into the training

procedure and the resulting behaviours later exploited,

or the data evaluated by an AI system could be engineered

to mislead the system. These maliciously manipulated

data points can fool AI systems that are not trained to

be robust to such attacks, while looking unchanged to

human eyes. These weaknesses each require different

countermeasures. Methods to analyse the vulnerability of

an AI system to these adversarial examples and training

algorithms to defend against them are an active research

topic that we are also working on. Many methods exist

to generate empirical or even deterministic robustness

guarantees, although those come at the cost of increased

computational cost and reduced accuracy.

Q: Who is responsible for AI systems when they

fail?

A: Who will be responsible for a failing AI system is

certainly an interesting question that will most likely have

to be decided by regulators. In general, I believe it is

unreasonable to expect that an AI system will be 100under

all (potentially unforeseen or maliciously engineered)

circumstances, therefore defining what a failure is, is

critical to answer this question. If you are referring to

cases such as autonomous driving systems confusing a

bright side panel of a trailer or car with the sky and

failing to detect an obstacle, the entity providing the

system is probably responsible for the failure of the AI

system. However, this is not the same as responsibility

for a potentially resulting accident. An observant driver

who could have intervened, society in general exaggerating

the ability of such a system or a regulator not defining

appropriate certification requirements might also all be

partially responsible.

Q: What’s the outlook on the optimization of the power

consumption of AI algorithms? Is there a lot of room

for optimization? AlphaGo consumed about 1 megawatt,

which, compared to Lee Sedol, is about 50’000 times more

power.

21

A: Energy efficiency is an important question in AI

research and there are significant efforts to reduce the

energy and hardware requirements to enable the use of

these systems for example on mobile phones. While there

probably is still significant room for optimization, a factor

of 50,000 seems unlikely. The AlphaGo example is also an

extreme case demonstrating what is possible if efficiency

constraints are ignored. Considering that the successor

to AlphaGo, AlphaGo Zero, is estimated to have an Elo

of over 5000, corresponding approximately to losing only

1 out of 1000 games against the best human go players,

using more power might also be acceptable.

Q: Is the brain efficient? (in the sense that it only can

be simulated by a thing bigger and more complicated than

itself)

A: It is almost universally true that it requires a more

complex system to fully simulate the behaviour of a

system, this is called computational irreducibility, while

there are some exceptions to this behaviour, none have

yet been found for the brain. The question is, whether

you want to actually simulate a human brain, or solve

the same tasks. The latter seems like the more interesting

problem and makes the question harder to answer. If you

think about complex mathematical operations the human

brain is orders of magnitudes slower and less efficient

than even a simple calculator, while AI systems can not

replicate other feats. Therefore, I will go with: The brain

is probably efficient for some tasks but not for others.

Q: Try to estimate the impact of AI in the workplace in the

short term (5-10 years) and in the long term (50+ years).

Will humans become obsolete in the workplace?

A: I predict the biggest short term impact of AI

on the workplace to be in the transportation field.

Autonomous driving in combination with electrification

has the potential to revolutionize both cargo and personal

transportation. To make predictions about the far future

would only be guessing. Everything from regulators

clamping down on AI so heavily as to make it unattractive

up to true Artificial General Intelligence is possible. While

I don’t believe that humans will become obsolete in the

workplace, their work might shift to tasks focused more

around human interaction.

Q: Is the creation of Artificial Intelligence the most

important event in human history so far?

A: Achieving Artificial General Intelligence could become

the most important event in human history, but until then

I don’t believe so.

Q: How far are we from Artificial General Intelligence and

a Superintelligence?

A: It does not look like the development of an AGI or

Superintelligence is imminent, but whether it will take 20

or 200 years, if it ever happens, is difficult to say.

4 Appendix

4.1 Reasons for the choice of topic

AI could unravel to be the most important invention of

humankind of our time or even of all time. Because of

this and the rapid development during this decade it was

an easy decision for us to choose AI as the subject of our

Matura Thesis. We believe that the future lies in AI and

therefore it is worthwhile to have engaged with it. As

potential computer science students we could imagine a

specialization towards AI in the later course of our studies

and thus a job in this field. So far only the tip of the

iceberg has been scratched, the field of AI will take a big

step in the direction of progress during our lifetimes and

we strive to contribute to this development.

4.2 Acknowledgements

We would first like to thank our thesis advisor Prof.

Dr. Delbrück Tobias of the Institute of Neuroinformatics.

With any problems or questions we encountered he guided

and encouraged us to do the better even when it was not

easy. He also gave us access to the needed equipment for

this project, which we profoundly appreciate.

Of course, we also thank the PhD students Yuhuang

Hu and Shasha Guo, whom Tobias Delbrück provided

for additional help. They were very responsive and we

therefore could always rely on quick support for smaller

questions.

We would also like to acknowledge the work of

Michael Bucher and Christopher Latkoczy from

Kantonsschule Stadelhofen as our school intern advisors

and proof-readers of this thesis, we are gratefully indebted

to their valuable suggestions on this thesis.

22

Finally, we must express our deepest gratitude to our

family and close friends for providing us with unfailing

support and continuous encouragement throughout the

process of researching and writing this thesis. This

accomplishment would not have been possible without

them. Our sincerest gratitude to you.

23

Declaration of Consent

The authors of this paper hereby declare that this paper was written by them

independently and that no sources other than those indicated were used. They

also acknowledge that this paper can be checked with a plagiarism detection

tool.

Location, Date

Location, Date

Signature

Signature

24

References

[1] Artificial intelligence, internet encyclopedia of philosophy. www.iep.utm.edu/art-inte/, last accessed on

26.07.2020.

[2] Philosophy of computing and information technology, philosophy of technology and engineering sciences.

www.sciencedirect.com/topics/engineering/artificial-intelligence, last accessed on 26.07.2020.

[3] 7 types of artificial intelligence.

www.forbes.com/sites/cognitiveworld/2019/06/19/7-types-of-artificial-intelligence/, last

accessed on 04.08.2020.

[4] What are the 3 types of ai?

www.codebots.com/artificial-intelligence/the-3-types-of-ai-is-the-third-even-possible, last

accessed on 04.08.2020.

[5] Murray Shanahan. The technological singularity, 2015. p. 86.

[6] What is machine learning? www.technologyreview.com/2018/11/17/103781/

what-is-machine-learning-we-drew-you-another-flowchart/, last accessed on 04.08.2020.

[7] What is deep learning? www.machinelearningmastery.com/what-is-deep-learning/, last accessed on

04.08.2020.

[8] History of artificial intelligence. https://www.coe.int/en/web/artificial-intelligence/history-of-ai,

last accessed on 11.09.2020.

[9] The history of artificial intelligence.

https://www.coe.int/en/web/artificial-intelligence/history-of-ai, last accessed on 11.09.2020.

[10] Daniel Crevier. Ai: The tumultuous history of the search for artificial intelligence, 1993. Simon and Newell

1958, p. 7-8.

[11] Daniel Crevier. Ai: The tumultuous history of the search for artificial intelligence, 1993. p. 100-144.

[12] Daniel Crevier. Ai: The tumultuous history of the search for artificial intelligence, 1993. p. 102–105.

[13] Pamela McCorduck. Machines who think (2nd ed.), 2004. p. 327–335.

[14] Daniel Crevier. Ai: The tumultuous history of the search for artificial intelligence, 1993. p. 148–159.

[15] Daniel Crevier. Ai: The tumultuous history of the search for artificial intelligence, 1993. p. 158-159.

[16] Peter Norvig. Artificial intelligence: A modern approach (2nd ed.), 2003. p. 23-24.

[17] Pamela McCorduck. Machines who think (2nd ed.), 2004. p. 436–441.

[18] Daniel Crevier. Ai: The tumultuous history of the search for artificial intelligence, 1993. p. 240.

[19] Sebastian Schuchmann. History of the second ai winter.

https://towardsdatascience.com/history-of-the-second-ai-winter-406f18789d45, last accessed on

24.09.2020.

[20] Pamela McCorduck. The singularity is near, 2004. p. 480–483.

[21] Ray Kurzweil. Machines who think (2nd ed.), 2005. p. 274.

[22] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo,

and Charles Blundell. Agent57: Outperforming the atari human benchmark, 2020.

25

[23] Nvidia gpu market share.

https://wccftech.com/amd-radeon-and-nvidia-geforce-discrete-gpu-market-share-q4-2019/, last

accessed on 12.08.2020.

[24] Nvidia. https://en.wikipedia.org/wiki/Nvidia, last accessed on 12.08.2020.

[25] Cloud tensor processing units (tpus). https://cloud.google.com/tpu/docs/tpus, last accessed on 12.08.2020.

[26] Project debater. https://www.research.ibm.com/artificial-intelligence/project-debater/about/#,

last accessed on 12.08.2020.

[27] Artificial intelligence in retail innovation, by amazon.

https://arekskuza.com/the-innovation-blog/amazon-and-artificial-intelligence-in-retail/, last

accessed on 12.08.2020.

[28] Facebook ai research. https://ai.facebook.com/, last accessed on 12.08.2020.

[29] C Brandli, R Berner, M Yang, S C Liu, and others. A 240× 180 130 db 3 µs latency global shutter

spatiotemporal vision sensor. IEEE J. Solid-State Circuits, 2014.

[30] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128×128 120 db 15 µs latency asynchronous

temporal contrast vision sensor. IEEE J. Solid-State Circuits, 43(2):566–576, 2008.

[31] jaer software. https://github.com/SensorsINI/jaer/, last accessed on 06.08.2020.

[32] Brio labyrinth game. www.brio.us/products/by-age/6-years-and-up/labyrinth, last accessed on

06.08.2020.

[33] What the heck is a tensor?!? www.youtube.com/watch?v=bpG3gqDM80w, last accessed on 06.08.2020.

[34] What’s a tensor? www.youtube.com/watch?v=f5liqUk0ZTw, last accessed on 06.08.2020.

[35] Explained: Neural networks.

http://news.mit.edu/2017/explained-neural-networks-deep-learning-0414, last accessed on 08.08.2020.

[36] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung. Digital selection and

analogue amplification coexist in a cortex-inspired silicon circuit. Nature, vol. 405, no. 6789, pp. 947–951.

[37] A comprehensive guide to convolutional neural networks — the eli5 way.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-

eli5-way-3bd2b1164a53, last accessed on 09.08.2020.

[38] Grant Sanderson. Backpropagation calculus — deep learning, chapter 4, 2017.

https://youtu.be/tIeHLnjs5U8, last accessed on 15.12.20.

[39] Michael Nielsen. How the backpropagation algorithm works, 2019.

http://neuralnetworksanddeeplearning.com/chap2.html, last accessed on 15.12.20.

[40] Y. Huang, I. Liao, C. Chen, T. İk, and W. Peng. Tracknet: A deep learning network for tracking high-speed and

tiny objects in sports applications*. In 2019 16th IEEE International Conference on Advanced Video and Signal

Based Surveillance (AVSS), pages 1–8, 2019.

[41] D Kermany, M Goldbaum, and Kang Zhang. Identifying medical diagnoses and treatable diseases by

image-based deep learning.

https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5?_returnURL=https%3A%2F%2Flinkinghub.

elsevier.com%2Fretrieve%2Fpii%2FS0092867418301545%3Fshowall%3Dtrue#secsectitle0030, last accessed

on 08.10.2020.

26

[42] Markus Schmitt. Artifical intelligence in medicine.

https://www.datarevenue.com/en-blog/artificial-intelligence-in-medicine, last accessed on

08.10.2020.

[43] Charles A Christy. Impact of artificial intelligence on banking, 17 January 1990.

https://www.latimes.com/archives/la-xpm-1990-01-17-fi-233-story.html, last accessed on 09.10.2020.

[44] Machine learning and ai for fraud prevention: A primer.

https://feedzai.com/resources/machine-learning-ai-fraud-prevention-primer/, last accessed on

10.10.2020.

[45] Algorithmic trading. https://www.investopedia.com/terms/a/algorithmictrading.asp, last accessed on

10.10.2020.

[46] Artificial intelligence etf list. https://etfdb.com/themes/artificial-intelligence-etfs/, last accessed on

10.10.2020.

[47] 40+ corporations working on autonomous vehicles.

https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list/, last

accessed on 10.10.2020.

[48] Tim Morris. Computer vision and image processing, 2004.

[49] Ziyu Wan, Bo Zhang, Dongdong Chen, Pan Zhang, Dong Chen, Jing Liao, and Fang Wen. Old photo restoration

via deep latent space translation, 2015. https://arxiv.org/pdf/2009.07047.pdf, last accessed on 19.12.20.

[50] Building safe artificial intelligence: specification, robustness, and assurance. https:

//medium.com/@deepmindsafetyresearch/building-safe-artificial-intelligence-52f5f75058f1, last

accessed on 28.12.2020.

[51] Explainable artificial intelligence.

https://en.wikipedia.org/wiki/Explainable_artificial_intelligence, last accessed on 13.08.2020.

[52] Xai—explainable artificial intelligence. https://robotics.sciencemag.org/content/4/37/eaay7120, last

accessed on 21.08.2020.

[53] Moral dilemmas. https://link.springer.com/chapter/10.1007/978-3-030-15191-1_2, last accessed on

21.08.2020.

[54] Another look at alphago vs. lee sedol: The power angle. https://www.ceva-dsp.com/ourblog/

artificial-intelligence-leaps-forward-mastering-the-ancient-game-of-go/, last accessed on

22.08.2020.

[55] Lecture 15 — efficient methods and hardware for deep learning, August 2017.

https://www.youtube.com/watch?v=eZdOkDtYMoo&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=15,

last accessed on 22.08.2020.

27

List of Figures

1 Source: https://towardsdatascience.com/what-is-deep-learning-and-how-does-it-work-2ce44bb692ac . . 2

2 Source: Image created by authors of this paper. 5

3 Source: Image created by authors of this paper. 6

4 Source: https://en.wikipedia.org/wiki/Tensor . 6

5 Source: Image created by authors of this paper. 7

6 Source: https://towardsdatascience.com/building-a-deep-learning-model-using-keras-1548ca149d37 . . 8

7 Source: https://towardsdatascience.com/machine-learning-for-beginners-an-introduction-to-neural-networks

-d49f22d238f9 . 8

8 Source: https://towardsdatascience.com/machine-learning-for-beginners-an-introduction-to-neural-networks

-d49f22d238f9 . 8

9 Source: Image created by authors of this paper. 9

11 Source: https://towardsdatascience.com/types-of-convolution-kernels-simplified-f040cb307c37 9

10 Source: https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial

-basic-advanced/ . 10

12 Source: https://stats.stackexchange.com/questions/362988/in-cnn-do-we-have-learn-kernel-values-at-every

-convolution-layer . 10

14 Source: Image created by authors of this paper. 10

15 Source: Image created by authors of this paper. 10

16 Source: Image created by authors of this paper. 11

17 Source: https://mc.ai/gradient-descent-an-optimization-method-used-in-machine-learning/ 11

18 Source: https://blog.paperspace.com/part-3-generic-python-implementation-of-gradient-descent-for-nn

-optimization/ . 12

19 Source: Image created by authors of this paper. 12

20 Source: Image created by authors of this paper. 12

22 Source: Image created by authors of this paper. 15

21 Source: Image created by authors of this paper. 16

23 Source: Image created by authors of this paper. 16

24 Source: Image created by authors of this paper. 16

25 Source: Image created by authors of this paper. 17

26 Source: Image created by authors of this paper. 17

28 Source: https://www.wikiwand.com/en/Computer vision . 18

27 Source: https://www.synopsys.com/automotive/autonomous-driving-levels.html (modified) 19

29 Source: https://en.wikipedia.org/wiki/Inpainting . 19

28

