
Fly by wire for model airplanes

Jonathan Hungerbühler

Maturitätsarbeit
im Fach Informatik

Betreuende Lehrperson:
Lukas Fässler

7. Januar 2020

Fly by wire for model airplanes

Jonathan Hungerbühler

Maturitätsarbeit
im Fach Informatik

Betreuende Lehrperson:
Lukas Fässler

7. Januar 2020

C omments on the title page

The official logo of the Mathematisch-Naturwissenschaftliches Gymnasium Rämibühl adorns
the head of the title page. It is available on the website www.mng.ch as svg file (Scalable
Vector Graphics) and can be scaled without any loss of quality. Background and font are
in classical sepia (background RGB BinHex FBF0D9, CMYK 0/4/14/2, font RGB BinHex
5F4B32, CMYK 0/21/47/63).
The bastard title picks up the logo again. To create a reference to the work, I underlaid the
logo with a casual brush stroke in Zürich blue (RGB BinHex 0066CC, CMYK 100/44/0/0).
This reminds of the color of the sky, in which the airplanes cavort.

iii

https://www.mng.ch

A bstract

The intention of this project was to create a functioning fly by wire system (FBW system)
with a dedicated aircraft. To achieve this all relevant physical aspects regarding rigid body
movement and fluid dynamics where considered. Said information was then used to construct
a model of a fixed-wing aircraft. The resulting airframe was then fitted with the appropriate
electrical systems to serve as a testing platform for the proposed flight controller and its
associated algorithms. These form the main part of the project, ranging from telemetry han-
dling, data acquisition and extended linear quadric state estimation to solution approaches
for optimal control problems via closed loop policies. This allowed the implementation of
a two axis attitude tracking servo as well as a yaw damping mechanism that fully manages
the rudder during flight manoeuvres. After the model aircraft was equipped with the FBW
system, numerous flight tests were made to determine the tuning parameters. The most
successful flight extended over about 200 meters.

v

C ontents

Comments on the title page iii

Abstract v

1 Introduction 1

1.1 Problem description . 1

1.2 Notions and notations . 1

2 Mechanics and fluid dynamics 5

2.1 Lift . 5

2.2 Wing Loading . 6

2.3 Angle of Attack and Stall . 6

2.4 Wing Sweep . 7

2.5 Dihedral and Wing Placement . 8

2.6 Control Surfaces . 9

2.7 Navigation . 10

2.8 Material . 11

2.9 Model . 12

3 Electrical aspects 13

3.1 Controller . 13

3.2 Telemetry . 15

3.3 Sensors . 17

3.4 Servos . 18

3.5 Powertrain . 18

4 Software 21

4.1 Digital signal processing . 21

4.1.1 Digital low pass filter . 21

vii

viii

4.1.2 Kalman Filter . 23
4.1.3 Sensor Fusion . 25
4.1.4 Extended Kalman Filter . 28

4.2 Control . 33
4.2.1 Model Predictive Control . 33
4.2.2 Proportional Integral Derivative Controller 34
4.2.3 Implementation . 36

5 Conclusion 39

6 Appendix: Code 41

Dank 57

Bibliography 61

Index 68

List of Figures 70

List of Codes 71

Eigenständigkeitserklärung 73

1 Introduction

1.1 Problem description

The goal of this project was the creation of a working model aircraft and its associated
control systems. One side involved the physical aspects of designing a flying object. These
are required to build a working prototype and finally dictate the flying characteristic of the
proposed aircraft. Secondly the plane was fitted with actuators and sensors, allowing for
the implementation of a computer-assisted fly-by-wire (FBW) system. This system made
headlines after the ditching of US Airways Flight 1549 on the Hudson river on January 15,
2009. Airbus A320-214 with 155 people on board was equipped with a state of the art FBW
system. During its initial climb from LaGuardia Airport, New York, the airplane hit a flock
of Canada Geese, resulting in loss of engine power. Captain Chesley Sullenberger managed,
thanks to the FBW system, to safely make an emergency landing on the Hudson river in the
middle of New Cork City (see Figure 1.1). Soon after, the incident became known as the
“Miracle on the Hudson”. The incident and the role of the FBW system has been reported
and analysed in [14]).

Figure 1.1: The “Miracle on the Hudson’.’

Systems like this replace the manual controls of an aircraft by connecting the mechanical
systems to a digital controller. This allows a pilot to command an aircraft without having
to directly interface with every individual component, resulting in greater ease-of-use, safety
and setting the base for future fully autonomous flight.

1.2 Notions and notations

In this section we introduce some of the main notions which we use later with a brief de-
scription. The precise definitions, if needed, will be given in the following chapters.

1

2 1.2. Notions and notations

We will use the standard abbreviation UAV for unmanned aerial vehicle or drone. The
mechanical structure of an aircraft is called airframe. The main body section of the aircraft
is referred to as Fuselage, carrying the payload, which is the carrying capacity of an aircraft.
In this work we will consider only a fixed-wing design, i.e., a flying machine with fixed wings
(airfoils), in contrast to a rotary-wing aircraft such as a helicopter.
A Fly-By-Wire system describes an electrical system, connecting the aircraft’s actuators via
a flight controller to the pilot’s controls. The pilot may control an airplane via changing
its attitude that consists out of roll, pitchpitch and yaw. These describe the angle between
the wings and the horizon in the plane perpendicular to the flight direction, angle of the
flight direction relative to the horizon line and the orientation in earth’s horizontal plane
respectively.
The lift is the component of the resulting force acting on a wing which is perpendicular
to the direction of the flight and opposite to the force of gravity. The component of the
force parallel to the direction of the flight is called drag force or air resistance. This force
is overcome by the propeller propulsion. The angle of attack AoA is the angle between the
main reference line of the airplane and the incoming air flow. The Reynolds number Re can
be understood as the ratio of inertia forces to viscosity forces in a given fluid. The Mach
number is the dimensionless ratio between the relative velocity of a body in a fluid and the
speed of sound in that fluid. The wing loading is the ratio between the weight of an aircraft
and the area of its wing.
The wing chord refers to the imaginary line connecting the nose of the airfoil and the trailing
edge of the airfoil.
An Analog to Digital Converter (ADC) is a device that maps an electrical voltage range to
a range of numbers.
A microcontroller is a System on a Chip (SoC) that consists out of a processing unit and
memory directly executing the given source code. This is similar to a single board computer
that refers to a computer with all required components such as memory, interfaces and a
power supply, consisting out of one single PCB. PCB stands for Printed Circuit Board and
is a copper plated fibreglass plate used to connect individual electronic components.
A task manager is a program or circuit that is responsible for managing the execution of
software.
Telemetry refers to transmission of measurement data and commands over a remote data
link (usually wireless). The downlink describes the dataflow from a remote location towards
a centre and the uplink the opposite direction away from the central unit. The transmission
method of said data is called message transport.The transported data is encoded into data
packets that are organised by the software layer. The hardware layer divides the payload
further into frames that are fundamental data units on a physical level. This can be done
over a serial data bus that transmits data in series rater than in parallel. The payload may
be protected against transmission errors by using parity, forming to a checksum. The baud
rate describes the transmission speed of a data link. Chip-to-chip communication is defined
as the data exchange between automated systems.
An AHRS (Attitude Heading Reference System) is a system that tracks the angular orien-
tation of an object in 3D-space. Euler angles are the orientation in 3D-space consisting out
of three values, forming a touple that describes the rotation around each individual axis.
Rotations can also be represented by quaternions that consist out of a real part, forming a
rotation axis in 3D-space and an imaginary scalar encoding the rotation angle around said
axis.

1. Introduction 3

State space is a mathematical model, where all states of a system can be represented as
a vector inside a space, that contains all possible system states. A state transfer function
transforms said states inside the space according to the system dynamics.
A closed loop system is a self regulating system that consists out of a policy that gets direct
state feedback from the plant to control.
A Jacobian matrix generalizes the derivative of a real valued function of one variable. If
f : Rn → Rm, then the Jacobian matrix in the point x ∈ Rn is given by

Jf (x) =
(
∂fi(x)
∂xj

)
∈ Rm×n.

The linearization of f in a point x0 is then

f(x) = f(x0) + Jf (x0)(x− x0).

2Mechanics and fluid dynamics

The mechanical design of the UAV was centred around maximising the vehicle’s efficiency
to increase possible real-world applications. The airframe had to be modelled around a large
payload carrying capacity and should offer good fuel efficiency.
The set design criteria are best met by a fixed-wing design, which creates lift through im-
movable airfoils. This also comes with the added benefit of greater stability compared to
rotary wings, further increasing system reliability.

2.1 Lift

The majority of an aircraft’s lift is generated by the main airfoil (see [9]): The wings generate
an upward force from the airstream they experience during flight (see Figure 2.1). The

flow direction

lift drag

total aerodynamic force

Figure 2.1: Joukowski profile in the complex plane with laminar flow lines. See [11] and [16].

phenomenon which applies here is Bernoulli’s principle which states that the increase in the
speed of a fluid on the upper side of the wing which is forced by the geometry of the profile
leads to a decrease in static pressure.
Every airfoil has a specific lift coefficient CL which is dependant on the wing profile, the angle
of attack towards to the oncoming airstream, the Reynolds number and its Mach number,
of which the latter can be ignored, as the proposed design is considered only to fly well
under the speed of sound in air. The Reynolds number describes the ratio of a fluids internal
forces FI to its viscosity force FV . More precisely, let v be the fluids relative velocity in
m/s with respect to the moving object, l a characteristic linear dimension of the object in
meters (typically its length), and let ν denote the fluids kinematic viscosity in m2/s, then

5

6 2.2. Wing Loading

the Reynolds number is defined by

Re = FI
FV

= v l

ν
. (2.1)

Experiments show that the lift force L of a body moving in a fluid is proportional to the
relevant surface A (e.g. the area of the wing), the density ρ of the fluid and the square of the
velocity v. The proportionality coefficient is called lift coefficient. Hence, the lift coefficient
CL is a dimensionless number given by

CL = 2L
ρ v2A

. (2.2)

The numerical value of CL can therefore be determined by experimentally measuring L on
the right hand side of (2.2) for one arbitrary velocity v, assuming that ρ and A are known.
Once we have CL we can solve (2.2) for the lift force L and find

L = 1
2CLρ v

2A. (2.3)

2.2 Wing Loading

Another important parameter of airfoil design is the wing loading WL (see [25] or [8]), which
is the quotient of the aircraft’s mass m and the wing area A:

WL = m

A
. (2.4)

Not only does a wing have to be designed to withstand a certain load to allow for flight
with a desired payload but it is also one of the main factors that influence the aircraft’s stall
speed which we consider next.

2.3 Angle of Attack and Stall

The lift coefficient of a wing changes with the angle to the oncoming airstream (the angle
of attack AoA), hence influencing the generated lift. This combined with engine power are
the main ways of a fixed-wing aircraft to control its climb rate and altitude. The AoA over
the main wing is controlled using the elevator at the tail, forcing air up, hence tail down,
and therefore levering the nose upwards. Experimentally, one finds that the effective lift
coefficient Ceff

L depends approximately affinely linear on the AoA α, namely

Ceff
L ' C ini

L

(
1− α

α̂

)
. (2.5)

Here, C ini
L denotes the lift coefficient for horizontal flight, i.e., α = 0. So, every wing

has a characteristic so called stall angle α̂ at which the lift vanishes. At this angle a flow
separation at the tip of the wing occurs, resulting in turbulence directly over the wing surface.
This results in a dramatic lift reduction and requires the pilot to recover by immediately
reducing the AoA. The stall angle is specific to each airfoil design and can be determined
experimentally. To do this a large amount of strings is attached directly to the wing surface.
If rotated in an airstream the onset of turbulence is made visible by the strings not laying
flat to the surface but being distorted by the turbulence. It is important to determine the
stall angle of the aircraft to later constrain the FBW-system to only allow safe angles. Plane

2. Mechanics and fluid dynamics 7

stalling can also be expressed as a function of airspeed. This links the lift L0 needed to
maintain altitude at a given speed v to the AoA α providing said lift. Utilising (2.5) in the
lift equation (2.3) and the critical angle α̂, the stall speed v̂ can be expressed as follows:

v̂ '
√

2L0
ρAC ini

L (1− α
α̂) . (2.6)

A safe flight at a given angle α is therefore only possible for speed v ≥ v̂. The stall speed
is mainly useful when determining the maximum payload for cruising and restricting the
throttle control to safe limits. For more information we refer to [26] and [6].

2.4 Wing Sweep

The amount the wing tips are angled in reference to their root is referred to as wing sweep (see
Figure 2.2). As we will explain below, the wing sweep plays a decisive role for maintaining
sufficient lift during flight (see, e.g., [7], [18] and [24]).

sweep angle γ

Figure 2.2: Wing sweep.

Even if an airfoil is only subjected to a subsonic airstream the area near its front is still
capable of creating a localised flow that can exceed subsonic speeds. This area of supersonic
flow then creates shockwaves, detaching the upper airflow from the wing surface, which
results in dramatically increased drag as well as reduced lift. This famous problem was
first observed on the P-38 Lightning, engineered by Lockheed during the Second World War.
The sudden lift reduction that occurred with certain airspeeds combined with the placement
of the horizontal stabiliser caused the plane to enter a nearly unrecoverable nosedive (see
Figure 2.3).
On an aircraft with no wing sweep the airstream flows fully parallel to the wing chord. This
velocity component is referred to as chord wise flow and is the one accelerated through the
airfoil, reducing the critical mach number. The flow over a swept wing contains another span
wise component that follows the wing tip and is therefore not subject to the acceleration
caused by the wing profile. This reduces the cord-wise flow, as the overall flow is expressed
as a vector V consisting of the span-wise flow S and the chord-wise flow C (see Figure 2.4).

V =
(
S
C

)
, |V | =

√
S2 + C2 = |C|sec γ . (2.7)

8 2.5. Dihedral and Wing Placement

Figure 2.3: Schlieren photograph of transonic flow over an airfoil. The nearly vertical shock
wave is followed by boundary layer separation that adversly affects lift, drag, an other flight
parameters (from [2]).

V

S

C
γ

Figure 2.4: Decomposition of the flow velocity.

Assuming the airspeed |V | is the same, a wing with a larger span-wise flow S leads to a
reduction of the cord-wise component. This results in an aircraft that is capable of reaching
higher velocities |V | relative to the cord-wise flow, effectively delaying the occurrence of flow
separation and therefore increasing the critical mach number. While this is even needed on
commercial passenger planes the proposed airframe in this paper is way under the size and
speed limits to justify a swept wing design.

2.5 Dihedral and Wing Placement

The dihedral angle Γ of a wing refers to the amount the wing surface is angled upwards or
downwards (also known as anhedral) from a horizontal position (see Figure 2.5). Its main

2. Mechanics and fluid dynamics 9

purpose is to influence the aircrafts overall lateral stability (see [22] or [28]). An airfoil always
creates lift in the direction perpendicular to the surface. If a plane with a dihedral angle
Γ 6= 0 is turned around the roll axis the lift components facing up are unequal, resulting
in a rolling force itself, that either increases or counteracts the original roll movement (see,
e.g., [1]).

Γ

Figure 2.5: Dihedral angle.

The wing placement relative to the center of mass of the aircraft (CoM) dictates the flight
stability. A low-wing design generally gives a plane less stability, as the generated lift force
acts offset to the CoM, giving the whole system a similar characteristic to an inverted pen-
dulum: an unstable system, that needs to be kept in balance externally. The most common
configurations are either planes with a high-mounted wing and an anhedral angle such as
the Antonov An-255 or low-wing designs with a dihedral angle, seen on most passenger and
light cargo planes. Both provide a balance between wing placement induced and dihedral
stability, as an imbalance leads to uncontrollability through either too much instability or
stability. The proposed UAV-model got a top mounted wing to allow for easier assembly,
as the wing would only need to be attached to the top of the fuselage rather than to be
incorporated into it. Because the design in question is used for development a slight dihedral
angle was introduced additionally, to create a more stable testing platform.

2.6 Control Surfaces

The control surfaces of an aircraft are used to change its attitude (see [17]). They do this by
deflecting the airstream in a certain direction. As they are offset from the CoM they create
a torque on the airframe, changing the plane’s attitude over time (see Figures 2.6 and 2.7).

Center of mass
F

`

Figure 2.6: Torque `F induced by elevator.

10 2.7. Navigation

The proposed model features an elevator positioned on the horizontal stabiliser at the tail of
the aircraft. Its function is to control the plane’s pitch angle. Also mounted at the tail is the
rudder, a part of the vertical stabiliser that mainly controls the sideslip. This describes the
horizontal angle between the plane’s heading and the oncoming airstream. The rudder plays
an important role in making coordinated turns, in which the sideslip is kept minimal and
the gravity experienced on board is perpendicular to the floor despite being influenced by a
centrifugal force acting outwards. The effectiveness of the rudder and elevator is increased
due to their placement on the tail, reducing the required deflection angle and surface size.
This is also the reason for the aileron placement. These are located at the tips of the main
wing and are able to set the plane into a rolling motion. This is the main control used to
turn the aircraft and change its heading. One important thing to consider is adverse yaw.
This describes a slight change in the opposite yaw direction compared to the one navigating
towards, caused by a change in drag by deflecting the ailerons. To overcome this the rudder
is utilised to minimise sideslip. Furthermore the aileron range of motion can be made slightly
asymmetrical by allowing the upward deflection to be slightly larger. This results in a smaller
drag difference while still producing the desired lift difference on each side (see Figure 2.7).

Figure 2.7: Ailerons: The rising wing tip creates more drag compared to the sinking one,
as it has to generate lift. This can be overcome by increasing the upwards deflection of the
lowering side, matching the drag created by air resistance.

The effectiveness of all control surfaces also depends on the current airspeed, as larger ve-
locities demand a smaller deflection to generate the same torque. Some planes are therefore
equipped with split control surfaces, allowing for a reduction in size during cruise and ad-
ditionally offering redundancy. Most FBW-systems are also able to apply software scaling
to the surface deflection, based on the current airspeed. This speed-scaling however was not
implemented in the proposed system, as the speed differences of the model are rather small
and the later discussed closed loop controller (see Section 4.2) was designed to withstand
changes in actuator effectiveness. This also removes another parameter, that, if tuned poorly,
could compromise the flight performance.

2.7 Navigation

Fixed wing aircraft navigate by changing their altitude above the ground and their heading,
wich describes their yaw angle relative to north. The altitude is managed by changing the lift
generated by the wings. This is done by either changing engine power, affecting airspeed or
by altering the pitch angle, resulting in changed AoA. Both influence the generated lift and
therefore a change in the plane’s vertical velocity, also referred to as climb rate. To maintain a
certain altitude the plane has to keep the climb rate theoretically at zero, only compensating

2. Mechanics and fluid dynamics 11

for external influences such as turbulence or weather disturbances. The proposed flight
controller could track a given altitude only by changing the pitch angle. This would add
simplicity and give the pilot the freedom of choosing the flying speed. Planes change their
heading by performing a coordinated turn. This manoeuvre is performed by rolling the
plane sideways using the ailerons and the rudder to correct for sideslip. This results in
the generated lift pointing diagonally. The vertical part keeps the plane in the air but
needs to be increased using the elevator, as it is now lower compared to level flight. This
effect can be quantified by looking at Figure 2.8: For level flight, the lift L0 = mg, while
Lϕ = mg secϕ = L0 secϕ > L0 for ϕ > 0. The other lift component points towards a
hypothetical turn center C and keeps the plane on a circular path with a constant radius R.
Said radius R can be calculated from the airspeed v and the roll angle ϕ (the so called bank
angle), as is easily derived from Figure 2.8: The gravitational force is mg (where m is the
mass of the aircraft) and the centripetal force is mRω2 (ω denotes the angular velocity).

Aircraft

Lift Lϕ

mRω2

mg

ϕ

ϕ

C R

Figure 2.8: Aircraft during turn flight.

Indeed, we read off that tanϕ = Rω2

g . Recall, that the angular velocity ω and the velocity v
are connected via ω = v

R . Hence, we obtain

R = v2

g tanϕ . (2.8)

For more information we refer, e.g., to [30], [31] or [15].

2.8 Material

The construction material of the airframe had to feature a low density while still offering
sufficient rigidity. One cost effective match for this is foam board, a material consisting
mostly of low density polyethylene foam. This foam is cast into sheets and then sandwiched
between two layers of bentonite reinforced paper. This material has the additional benefit of

12 2.9. Model

being easy to build with as it can be cut with cutters and is compatible with most glues. The
airplane was fully constructed out of this material, only with the addition of a few 3d-printed
parts such as motor brackets and wooden dowels.

2.9 Model

As a starting point a model that best matched the desired criteria was chosen. In this case
it was a set of plans for the Simple Cub, designed by Josh Bixler at FliteTest. The design
was then modified to fit the required electronics, increase structural stability, feature an
acceptable wing-loading and reduce adverse yaw.
Figure 2.9 shows a photo of the model that was created in the course of this matura thesis.

Figure 2.9: The final model aircraft

3Electrical aspects

We start with an overview over the full electrical system in Figure 3.2. We discuss all relevant
components in the subsequent sections, housed all inside compartments of the fuselage as
shown in figure 3.1.

Figure 3.1: The electrical components inside a compartment of the fuselage.

3.1 Controller

The controller forms the core of the flight control system. It is responsible for acquiring
sensor measurements, handling the telemetry data and commanding all control surfaces of
the aircraft. For the use on a model-scale plane the controller had to additionally have a
small form factor and be energy efficient. The two main options that matched these criteria
where either a micro controller or a single board computer like for example a Raspberry Pi.
The main difference between these two types is the way software is executed on the de-
vice. A single board computer runs an operating system that forms a layer between the
actual hardware and the application side. It is responsible for interfacing with different
physical components and managing software execution. Most operating systems use a non-
deterministic task manager for this, wich is unproblematic for most applications such as
consumer use, as they are not time critical. This however could pose problems for the use
as a flight controller, because the stabilisation of an aircraft is both dependant on a high
update frequency and a reliable execution order. This could theoretically be fixed by heavily
customising the deployed operating system but would result in a lot of additionally required
work. A micro controller however would overcome this issue, as they either run the com-
piled programs directly on the hardware or employ a special real time operating system.
These are heavily stripped down forms of operating systems, that only provide rudimentary

13

14 3.1. Controller

br
us
hl
es
s

m
ot
or

ES
C
I

BE
C

se
ns
or
s

ba
tt
er
y

co
nt
ro
lle

r

se
rv
os

re
ce
iv
er

re
m
ot
e

po
we

r

po
we

r
2.

4
G
H
z

po
we

r

[c
on

tr
ol

su
rfa

ce
s]

[p
ro
pe

lle
r]

po
we

r
se
ns
in
g

(a
na

lo
g)

SB
us

PW
M

po
we

r
I2
C

po
we

r

PW
M

Figure 3.2: System Overview.

3. Electrical aspects 15

functions such as program multitasking, which if possible are executed in real time or at
least scheduled in a fully deterministic order. Additional benefits of micro controllers are a
lower energy consumption and higher system reliability, as hardware and software are less
complex.
At the beginning of the project a stock Arduino Mega 2560 Rev. 3 was utilised but was
later changed to an ESP-32 due to a higher performance demand (see [13]). The new
micro controller featured a 32-bit design, allowing single-cycle floating point operations,
dual processor cores for real time multitasking and a 240MHz clock speed. The latter would
even enable to software-emulate certain communication protocols.

3.2 Telemetry

To command the model aircraft a wireless communication link was required. This was
achieved with a normal hobby rc-remote made by FrSky. This remote transmitted the user
control inputs over a 2.4GHz wireless link to a receiver on the plane. The receiver itself was
able to control the onboard motors directly to allow for manual flight, as well as outputting all
revived signals over a data bus, giving the system an uplink connection for control commands.
Additionally the receiver also offered downlink capability by accepting data over the bus and
transmitting it back to the remote, providing the pilot with information like battery voltage
or the plane’s current altitude.
The data bus utilised by FrSky is called SBus, an uni-directional, serial data bus that was
originally developed by Futaba. This protocol had to be custom implemented on the ESP-32,
as it is rather uncommon. The utilised SBus consists of two layers: a hardware and a software
transport. The hardware transport is responsible for physically carrying the information over
the wires in the form of voltage changes. To transmit the information most transports encode
the data into smaller units called frames, which are then decoded again by the receiving end.
On a hardware level SBus resembles a universal serial standard called UART (Universal
asynchronous receiver-transmitter). Both protocols are asynchronous, meaning that they do
not require an additional clock signal (see Figure 3.3), as it is already contained within in
the data signal. This reduces the amount of data lines needed to one, which also restricts the
information flow to one single direction (without employing a complex collision avoidance).
The system has to be doubled to allow for a duplex connection (see Figure 3.4) by connecting
the receiving signal of one chip to the receiver of the other one and vice versa (see also [20]
or [5]).

clock

data 0 1 1 1 0 0

Synchronous Asynchronous

1 1 0 0 1 1

Figure 3.3: Synchronous vs. Asynchronous data transmission

While UART dictates the overall structure of a frame (see Figure 3.5) its exact contents
can be adjusted to fit the desired application. This includes one that exactly matches an
SBus frame, requiring a payload size of 8-bits, one parity and two stop bits. These notify

16 3.2. Telemetry

Simplex Duplex

IC1

TX

RX

IC2

TX

RX

IC1

TX

IC2

RX

Figure 3.4: Simplex vs. (full) Duplex communication link

the receiver of the begin/end of a frame and offer a measure against data corruption by the
means of parity.

0

Frame

ParityData Stop

Stop (1 - 2 bits)
Parity (odd/even)
Payload (5 - 9 bits)
Start bit (always 0)

Figure 3.5: The structure of an SBus frame.

Additionally SBus utilises a baud-rate of 100′000 bit/s and an inverted logic level compared
to standard UART, which can be easily configured within the code (see Code 3.1).

1 bus ->begin (100000 , SERIAL_8E2 , 16, 17, true , 1000);

Code 3.1: Configuration of the UART bus

Secondly comes the software transport layer. It describes how the data is structured before
it is encoded into frames. In most cases this is done by creating data packets that contain a
certain payload and sometimes additional information like timestamps or sender information.
As the purpose of SBus is to transmit analog user inputs in the form of lever positions with
a high reliability it only utilises one packet type with a fixed size. These packets contain one
header byte that indicates the start of a packet, followed by 22 bytes that contain 16 channels
of which every one represents a lever position encoded into 11 bit integer numbers. The packet
is then closed by sending one byte containing binary flags to indicate if the connection with
the remote has been lost and finally an empty stop byte. This structure allows the packets
to be decoded easily and also makes the whole system stateless, meaning that the connection
can be instantly resumed after interrupts without requiring some handshake procedure. The
software to decode the SBus packets was fully custom implemented and is an improved
version of the code written by Brian R. Taylor from Bolderflight Systems (See 6.1 and 6.2).
With the ability to receive the user inputs from the hobby receiver the flight controller was
now able to control the plane based on the pilot controls and the onboard sensor data. The
setup would also allow to completely bypass the control system in emergencies by simply

3. Electrical aspects 17

forwarding the user inputs to the motors just like the receiver would have done, again giving
fully manual control of the plane.

3.3 Sensors

The plane was fitted with numerous sensors to gather data about certain flight variables
such as air pressure or linear acceleration. These sensors have to first be configured by the
controller at takeoff to adjust parameters like sensitivity and update rate, requiring a link
from the controller to multiple sensing devices. During flight the captured data now has to be
transported the opposite way from multiple devices towards the controller. This requirement
for multi-device duplex rules out SBus/UART, as they only support device-to-device com-
munication. The most common data bus, that is supported by most sensors is I2C, another
serial bus that was developed by NXP Semiconductors (formerly Philips Semiconductors) in
1982. Unlike the above mentioned protocols it is synchronous (see Figure 3.3), meaning that
the clock signal is carried separately by one conductor, while the second one only transmits
the data’s logic level. I2C falls into the category of Master-Slave-Buses, meaning that every
system has one master that is responsible for managing traffic and one to multiple slave
devices (see Figure 3.6 and [3]). This architecture allows for a half-duplex connection, where
the master can write directly to a device and also retrieve data by sending a read-request and
waiting for the device to respond. The system is similar to full duplex as it is bi-directional
but restricted by the fact that traffic can only go one way at once and is regulated by the
master. To discriminate between the different devices everyone has a pre-defined one-byte
address, allowing for a maximum of 256 connected devices. The master can now address
every device individually by including the corresponding id in every message sent. This the-
oretically poses a security risk as all devices still receive every message. This can however
be ignored in most applications, as the protocol is intended for chip-to-chip communication
within a single machine and is therefore not directly accessible from the outside.

Master

IC1

IC2

clock

data

Figure 3.6: A typical I2C network.

To enable assisted FBW the plane had to capture information about its current altitude
and attitude. As the altitude is not directly measurable it had to be estimated using a
temperature and an air-pressure sensor. The data was then combined using a sensor fusion
algorithm, discussed later. Secondly the plane needed an attitude heading reference system
(AHRS). This system tracks its orientation angles, consisting of roll, pitch and yaw compared
to a reference frame. Here the heading describes the angle between north and the plane’s
heading direction and can be easily calculated from the yaw angle. The aircraft’s spacial

18 3.4. Servos

orientation could only be directly captured with the use of a flywheel gyroscope of some
sort. The problem with these sensors is that they are difficult to source, relatively heavy
and quite energy inefficient, as their flywheel has to be kept at a certain velocity. These
downsides can be overcome on larger, higher budget aircraft like passenger planes or fighter
jets but clearly not on a small model. Therefore the attitude had to be also measured
indirectly through a MEMS gyroscope. MEMS stands for Micro Electro Mechanical System
and describes a technology used to create microscopic mechanical devices using the same
silicon wavers as integrated circuits. This allows for the production of tiny, super light
weight and energy efficient sensors that are mainly used in consumer electronics such as
phones or smartwatches. Compared to the flywheel version a MEMS gyroscope is only able
to track the angular velocity instead of absolute angles and was therefore combined with the
linear acceleration and earth’s magnetic field measurements using another fusion algorithm.
Therefore final sensor range of the plane included only MEMS devices consisting of:

• Barometer to capture air pressure

• Temperature sensor to enhance altitude estimations

• Gyroscope to capture angular velocities

• Accelerometer to estimate a gravity vector and external forces on the plane

• Magnetometer for navigation and to enhance attitude estimation

3.4 Servos

The flight control surfaces, consisting of rudder, elevator and ailerons are all driven by servo
motors. These are electric motors with an integrated positional encoder to provide closed-
loop-feedback. This allows the system to control the exact deflection angle of the control
surfaces even under the influence of external forces, such as drag and turbulence. To qualify
for use on a model plane these actuators had to be compact and light, which perfectly matches
commercially available hobby servos for rc-models. These use a potentiometer as encoder
and feature a simple controller that can be commanded by sending pulse-width-modulated
signals (PWM) over a single wire. This is done by applying a rectangular waveform with a
period duration of 20ms, that is driven by the flight controller. The demanded position is
then encoded by varying the duty cycle of said signal, usually ranging from 1ms to 2ms (see
Figure 3.7). This leads to an unidirectional protocol that allows the servo position to be
updated with a frequency of 50Hz but provides no way for data from the servo to reach the
controller. This means that the system is fully reliant on the internal servo loop and cannot
be monitored. An advantage of the PWM protocol however is its ease of use and robustness,
as the signal is really resistant against external noise and the square wave being able to be
generated on the most minimal hardware. For more information see [32] and [33].

3.5 Powertrain

The main motor has to have enough power to propel the entire plane forward, forcing air over
the airfoils, generating lift. As the rest of the project is already fully electric and to reduce
cost and complexity an electric solution was chosen. Brushless electric motors are ideal for
this application, as they offer a lot of power in a small form-factor. These motors do not use

3. Electrical aspects 19

Frequency (50Hz)

Pulse (1-2ms)

Figure 3.7: PWM Signal

brushes like a classical DC-motor but are instead driven by three-phase alternating current,
that directly powers the stator. They are interfaced via an electronic speed controller (ESC)
that can change the rotational speed by changing the frequency of the drive signal. Most
ESCs are also capable of motor feedback by measuring the signal induced back by the motor
coils, allowing for more accurate speed control. The protocol to communicate with most
hobby motor controllers is conveniently the same as the one used by the servos, with the
only difference being the controlled value changing from a stationary angle to rotational
velocity. An ESC is usually connected straight to the battery of the model plane as the main
motor has the biggest energy draw. Therefore it is also fitted with a battery eliminator circuit
(BEC), designed to protect the connected battery from over-discharge. To power the rest of
the electronics the controller also features an auxiliary power supply, usually regulated at 5
volts. In the project this was fed directly into the main power distribution wiring, powering
the flight controller, sensors, servo motors and the telemetry transceiver (see also [29]).
The battery of the airplane was a multi-cell LiPo battery, chosen because of its high power
density. Despite this it makes up for a substantial amount of the aircraft’s mass and therefore
its placement needs extra consideration regarding the CoM. It is able to provide a voltage,
larger than its individual cells by chaining multiple in series. These can then be simply
discharged by connecting them to desired load such as the ESC. Here it is also possible to
measure the battery terminal voltage and current draw to estimate its charge and notify the
pilot of the remaining flight time. This can be done by connecting it to a voltage divider to
proportionally step-down the voltage, a current sensing resistor and then use an analog to
digital converter (ADC) of the microcontroller to convert the analog voltage into a digital
measurement (see Figures 3.8 and 3.9).

R1 R2

Vin Vout

Figure 3.8: A simple voltage divider: Vout = Vin
R2

R1+R2
.

The charging of LiPo batteries is a bit more complicated, as a specific charge procedure
has to be followed to ensure equal cell voltage and prevent overheating. This can be done
using a commercially available universal battery charger. Figure 3.10 shows the assembled
powertrain consisting out of the motor, the ESC and the LiPo battery.

20 3.5. Powertrain

R

lo
ad

Vbattery

Vsense

I

Figure 3.9: A low-side current sensing circuit: I = Vsense
R .

Figure 3.10: The powertrain inside its dedicated compartment before being mounted inside
the fuselage.

4 Software

4.1 Digital signal processing

Many integrated sensors are designed to fit a certain envelope regarding price and overall
size, compromising their performance. This combined with with the unavoidable nature of
any sensing system biasing its observations through measurement errors can lead to some
noisy and inaccurate data streams. The following are approaches used to overcome these
issues and deliver more accurate and stable data to the flight control system.

4.1.1 Digital low pass filter

Many sensors offer a high update rate, leaving only little time to do the actual measurement.
This makes the system susceptible to sensor noise, that can be seen while comparing the
signal to a reference (see Figure 4.1).

0 25 50 75 100 125 150 175 200
samples

2

1

0

1

2

va
lu

e

Reference sine signal

0 25 50 75 100 125 150 175 200
samples

2

1

0

1

2

m
ea

su
re

d

Signal with sensor noise

Figure 4.1: A reference signal with period T = π
20 , and one with gaussian noise of µ = 0

and σ = 0.4

The simplest way to deal with this noise is the implementation of a low pass filter. These
filters have a given cutoff frequency Fc and suppress the parts of a signal that exceed said
threshold. Every implementation does not discriminate exactly at the cutoff point but grad-

21

22 4.1. Digital signal processing

ually increases the signal attenuation (see Figure 4.2). The steepness of the cutoff slope is
a characteristic of every filter implementation and is generally referred to as the filter order
(see also Figure 4.2). A larger order describes a smaller cutoff band but may also increase
the filter’s response time (see also [10]).

−∞

−60

−40

−20

0

pass band stop band

1st order

2nd order

cutoff

frequency ω [rad/s] (logarithmic scale)

at
te
nu

at
io
n
[d
B]

Figure 4.2: Low pass filter. The dashed line indicates a hypothetical ideal filter.

This filter is commonly found in analog electronics, such as audio equipment but also well
established in the field of digital signal processing. Here it is based on the assumption, that
the frequency of the unwanted noise is higher than the maximum fluctuation rate of the real
world variable. This means that the sensor noise can be smoothed by setting the cutoff Fc
between the real world fluctuation and the sample frequency of the sensor.
As the proposed implementation of said filter has to run on the limited hardware of the
flight controller a heavily simplified version of Stephen Butterworth’s approach was utilized
(see [27]). Here y is the filter output at any given time, ∆t is the time since the last update,
x is the filter input, and Fc is the cutoff frequency. The update equation is given by

y(t+ ∆t) = (1− a)x(t) + y(t)a, where a = e−2πFc∆t.

This implementation corresponds to a first order filter that is also commonly referred to as
single pole. Its transfer function in the complex frequency plane contains one single peak. A
low pass filter offers an efficient way to reduce induced sensor noise as said error is attenuated
by the filter. This however leads to a tradeoff between a small cutoff to allow for strong data
smoothing but also induces a high delay and a high cutoff that ensures a fast response time
but provides less smoothing (see Figure 4.3).

4.1.2 Kalman Filter

The classic Kalman filter, also known as linear quadric estimator is one of the most common
methods used for system state estimation and sensor fusion. It was mainly developed by

4. Software 23

0 25 50 75 100 125 150 175 200
samples

2

1

0

1

2

sig
na

l

Filtered signal

fc1
fc2
reference

Figure 4.3: The reference signal compared to the noise signal with µ = 0 and σ = 0.4,
filtered with Fc1 = 9.8 · 10−3 and Fc2 = 1.1 · 10−1. The blue signal has less noise but shows
a phase shift relative to the reference. Note how the blue signal is slightly attenuated, as
its frequency is close to the cutoff.

Rudolf Kálmán around 1960 and played a key role in the Apollo program, forming the core
of the computer guidance system.
First a mathematical model of the system in question has to be created. This model consists
of defining a plant state x ∈ Rn, that contains all relevant variables. Next a state transition
function, represented by matrix A ∈ Rn×n, has to be defined, that describes the theoretical
future outcome x̂ ∈ Rn, given the current plant state x:

x̂ = Ax.

The filter now works in a two step process, where first an estimate x̂ using the equation
above is made. As the true plant state is never truly known every state is associated with
an uncertainty, represented in a covariance matrix P = Cov(x). This also has to be applied
to the prediction step, giving the theoretical next state x̂ with its associated uncertainty
P̂ = Cov(x̂), derived from the previous covariance Cov(x):

P̂ = Cov(x̂) = Cov(Ax) = ACov(x)AT = APAT .

As the state transition function F is idealistic it is never fully accurate. The plant is subject
to external influences that cannot be included in the mathematical model. This results in
every prediction increasing the uncertainty, what can be implemented in the filter by defining
an external noise matrix Q, that describes the added uncertainty for every step.
In some cases the external influences on the plant are based on other known variables of the
system. In this case it is possible to decrease the prediction uncertainty Q by modelling the
external factors into the prediction equation. Here u ∈ Rm represents the known system
variables and matrix B ∈ Rn×m describes the effects said variables have on the plant state
x. This resembles the classic discrete state space formula:

x̂ = Ax+Bu.

This leads to the final filter equations for the prediction step:

x̂k = Akx̂k−1 +Bkuk (4.1)
Pk = AkPk−1A

T
k +Qk. (4.2)

The second step of one filter cycle is the update step. It combines the predicted state x̂ with
some real sensor measurements z ∈ Rm. To do this the predicted state x̂ is transferred to
the expected sensor results ẑ with the measurement matrix H ∈ Rn×m:

ẑ = Hx̂.

24 4.1. Digital signal processing

This allows the filter to compare ẑ with the gathered measurements z to improve the filter
state and decrease the associated uncertainty. One other advantage is that the entire system
state does not have to be measured directly by the sensors but can be derived from their
results.
To get the required filter equations the system is simplified to one dimension. A Gaussian
distribution N (µ, σ2) of a random variable X with a variance of σ2 and a mean µ is expressed
by its density function:

g(x, µ, σ) = 1
σ
√

2π
e−

(x−µ)2

2σ2

This means, that for small ∆x the probability that X takes a value in the interval (x, x+∆x)
is given by g(x, µ, σ)∆x. Two random variablesX1, X2 with Gaussian distributionsN (µ1, σ

2
1)

(representing the distribution of the expected sensor results ẑ), and N (µ2, σ
2
2) (representing

the gathered noisy measurements z) represent a random variable (X1, X2) ∈ R2 with density

(x1, x2) 7→ g(x1, µ1, σ1)g(x2, µ2, σ2),

i.e., the probability that the vector valued random variable (X1, X2) assumes a value in
(x1, x1 + ∆x1) × (x2, x2 + ∆x2) is given by g(x1, µ1, σ1)g(x2, µ2, σ2)∆x1∆x2. Along the
diagonal X1 = X2 (i.e., the event that the measurements ẑ which correspond to the predicted
state x̂ agree with the actually gathered measurements z) the density is the product

g : x 7→ g(x, µ1, σ1)g(x, µ2, σ2).

This corresponds to a conditional probability to find a value X1 in (x, x + ∆) subject to
the condition that also X2 takes the value in the same interval. To get the density which
corresponds to this conditional probability one has to normalize g such that its integral over
R equals 1. Observe, that

g(x) = 1
2πσ1σ2

exp
(
−(x− µ1)2

2σ2
1

− (x− µ2)2

2σ2
2

)
.

Adding the two fractions and completing the square reveals that the resulting distribution
is again a Gaussian distribution N (µ, σ2) with

µ = µ1σ
2
2 + µ2σ

2
1

σ2
1 + σ2

2
(4.3)

σ2 = σ2
1σ

2
2

σ2
1 + σ2

2
. (4.4)

These terms can be rewritten by using the factor

K = σ2
1

σ2
1 + σ2

2
(4.5)

introduced by Kalman. We obtain

µ = µ1 +K(µ2 − µ1) (4.6)
σ2 = σ2

1 −Kσ2
1 . (4.7)

K is referred to as the Kalman gain, because it reduces the variance (the uncertainty) σ2
1 of

the predicted state to the smaller value σ2 = σ2
1 − Kσ2

1 by comparing the prediction with
the actual measurements. This was Kalman’s groundbreaking idea (see [4] for the complete
theory).

4. Software 25

In higher dimensions, one has to replace the variance by the covariance matrix: Here, the
sensor data z ∈ Rm with their associated covariance R := Cov(z) are compared to the
expected measurements ẑ = Hx̂ and their covariance Cov(ẑ) = HPHT (where P := Cov(x̂)),
resulting in the final estimated state x̂′ with its covariance P ′ := Cov(x̂′). The corresponding
equations are

K = HkPkH
T
k (HkPkH

T
k +Rk)−1 (4.8)

Hkx̂
′
k = Hkx̂k +K(z −Hkx̂k) (4.9)

HkP
′
kH

T
k = HkPkH

T
k −KHkPkH

T
k , (4.10)

where we used the same colors as in (4.5), (4.6), and (4.7) to make the correspondence visible.
This results in the following filter update equations

K ′ = PkH
T
k (HkPkH

T
k +Rk)−1 (4.11)

x̂′k = x̂k +K ′(z −Hkx̂k) (4.12)
P ′k = Pk −K ′HkPk (4.13)

where we use K ′ connected to the Kalman gain via K = HkK
′.

4.1.3 Sensor Fusion

To give the proposed aircraft the ability to stabilise itself during flight the system needs
to acquire real time data. This is done through a range of on board sensors that feed the
information directly to the flight controller. As this data is subject to measurement errors
and may not be directly correlated to a desired variable it has to be estimated. This is
done through an algorithm that fuses together different related pieces of data to estimate
the wanted value.

Altitude

As it is difficult to directly measure the altitude of an object directly through on-board sensors
it had to be estimated using available data. In the proposed system this was done through
a barometer, and a vertical accelerometer. A simple variant of the Barometric formula
is the so called International altitude formula: Normalized by the values for temperature
T = 15◦C = 288.15K, air pressure at see level p0 = 1013.25hPa, temperature gradient
∆T = 0.65K/m (temperature decrease per 100 height meters), one gets

h = 288.15K
0.65K/m

(
1.0−

(
p

1013.25hPa

) 1
5255

)
(4.14)

which gives a good estimate for altitudes h < 11 km as a function of the measured air
pressure p in hPa. A slightly better approximation which takes into account the current
weather condition is possible if the altitude ĥ above sea level of the launch site and the
corresponding air pressure p̂ are known. In this case, one just replaces the constant in (4.14)
in front of the bracket by

C = ĥ

1.0−
(

p̂
1013.25hPa

) 1
5255

.

Then, the modified formula

h = C

(
1.0−

(
p

1013.25hPa

) 1
5255

)
(4.15)

26 4.1. Digital signal processing

trivially gives the correct altitude at the launch site.
The problem with only this approach is that the barometer sensor data are really noisy and
therefore has to be put through a digital low pass filter. This increases the accuracy but
also increases the time for real changes to propagate through the filter, compromising a fast
response time. This results in a measurement that offers a high drift resistance over longer
time periods, as the filter averages the noisy data to one theoretically more accurate one.
The accuracy of the used air pressure sensor is remarkable: By (4.15) it indicates changes
in altitude of 20 cm correctly.
On the other hand the vertical position h can also be computed given the starting value
h0 = h(0), starting velocity v0 = v(0) and the vertical acceleration a(t):

h(t) = h0 + v0t+
∫ t

0

∫ τ

0
a(u)du dτ. (4.16)

If the acceleration is measured at the time steps tk = k∆t, the formula (4.16) can be
discretized and hence estimated as follows:

v(tk+1) = v(tk) + a(tk)∆t
h(tk+1) = h(tk) + v(tk)∆t.

This approach offers a really fast response to changes in the real-world value. The downside
here is that the measured variable a(t) is subject to the sensor noise, meaning that these
errors are gradually accumulated by the integrator.
The methods proposed above both have their own advantages and disadvantages that seem
to complement each other. The slow-response approach could be used to correct the mea-
surement drift while the other one could increase the system response time over shorter time
periods. To fuse both approaches the above mentioned Kalman filter was utilised. Here the
state contained the altitude h, the vertical velocity v and vertical acceleration a:

x =
(
h v a

)T
.

The system in question can now be described as discrete state space equation

xk+1 =

1 ∆t 1
2∆t2

0 1 ∆t
0 0 1

xk
To find the system noise Q a method for the creation of discrete white nose for systems with
timestep ∆t consisting of derivatives up to order 2 was used:

Q = GGT , where G =

1
2∆t2
∆t
1

The measurement matrix H and a covariance matrix R of the measurement. More precisely,
with σ2

h > 0 describing the barometer and σ2
a > 0 the accelerometer noise variance, we have

H =
(

1 0 0
0 0 1

)
, with the measurement estimate being ẑ = Hx,

and
R =

(
σ2
h 0

0 σ2
a

)
.

4. Software 27

An initial state x0 with associated covariance matrix P representing the uncertainty of the
state is given by

x0 =

0
0
0

 , P =

σ2
h 0 0

0 1 0
0 0 σ2

h

 .
This allows the system to estimate the not measured vertical velocity, representing the air-
craft climb rate, and enhance the altitude and acceleration measurements. To improve the
system performance even further the data from the accelerometer was first smoothed by a
digital low pass filter (see Figure 4.4).

0 50 100 150 200 250 300
samples

0

2

4

6

al
tit

ud
e

[m
]

Altitude
measured
reference
kalman estimate

0 50 100 150 200 250 300
samples

0.25

0.00

0.25

0.50

0.75

ve
lo

cit
y

[m
/s

]

Vertical velocity

kalman estimate
reference

0 50 100 150 200 250 300
samples

0.50

0.25

0.00

0.25

ac
ce

le
ra

tio
n

[m
/s

^2
]

Vertical acceleration

measured
reference
kalman estimate

Figure 4.4: The results of the proposed altitude estimator compared to the reference signal.
The system shows good performance after an initiation period of 50 samples. Note that the
acceleration estimate is not as accurate as the other components. This is because the state
transition A directs the information flow towards the primitives, i.e., velocity and altitude.

See Code 6.7 in Chapter 6 for the Python code which belongs to this section.

Attitude

The attitude of the aircraft, consisting of roll, pitch and yaw, had to be estimated from
the angular velocities measured by the MEMS gyroscope. This can be done through an
integrator, that combines all measured velocities v(t) ∈ R3 at time t to get the current

28 4.1. Digital signal processing

orientation x ∈ R3, based on the initial position x0:

x(t) = x0 +
∫ t

0
v(t)dt

In the presented system the angles are integrated as Euler angles, which makes the system
prone to gimbal locking. This is a situation, where two of the three Euler axis enter a
parallel alignment, reducing the system’s degrees of freedom by one. If the following update
step contains a component on the locked axis other than zero, said information is lost.
This would represent a catastrophic failure of the system, resulting in the flight controller
loosing orientation. Therefore another representation for 3-dimensional rotations was used,
consisting of a quaternion (see, e.g., [12]). Giving the orientation state another degree of
freedom prevents it from ever entering the above described situation. The quaternion q
can be interpreted as containing a real component qR ∈ R3, representing a rotation axis
in 3D-space and an imaginary part qI ∈ R, describing the rotation angle around said axis.
The aircraft’s orientation can still be represented in the classic Euler format, given that said
information is not chained together, meaning that only the integrator was forced to utilise
it.
Another problem with integrating the raw data lies in the sensor error that is present in each
measurement. This leads to a buildup of errors over time that render orientation tracking
relying only on this method almost unusable. To successfully track a value through inte-
gration would only be possible if the measurements would fully represent the truth, making
this approach a purely hypothetical solution. To overcome this the system had to gather
additional information that related to the searched attitude but where not subject to er-
ror buildup induced drift. This can be done through measuring earth’s gravity, assuming
gravity is present in the environment in question and would form a homogenous, parallel
field. Another information source was the on-board magnetometer, providing earth’s mag-
netic field, again assuming that said field was approximately homogenous with a parallel
orientation. This information is not fully accurate due the approximations but not subject
to drift, offering a good counterpart to fuse with the gyroscope’s velocity data.

4.1.4 Extended Kalman Filter

The AHRS system of the airplane was based on another sensor fusion algorithm, consisting
of a modified Kalman filter. The state of this filter x ∈ R7 consists of a quaternion q, that
represents the aircraft’s rotation in reference to earth and a bias vector b ∈ R3 for each
gyroscope axis, that serves as the filter’s estimate of the measurement error, making the
filter an error state Kalman filter. These are a special category of filters that improve their
performance by additionally estimating biases of connected sensors as part of the full system
state:

x =
(
q0 q1 q2 q3 b0 b1 b2

)T
In this case this is only applicable to the raw gyroscope data v that is corrected using the
estimated bias b into v̂:

v̂ =

b0 0 0
0 b1 0
0 0 b2

v
As the gyroscope delivers rotational velocity it can be used to predict where the system’s
state is probably moving. This is done by applying the velocities to the state quaternion,
while also adjusting the gyroscope biases according to the current orientation q. This can

4. Software 29

be represented as a state transition function as follows:

x(t+ ∆t) = Ax(t)

where

A =

1 −δ0 −δ1 −δ2 ε1 ε2 ε3
δ0 1 δ2 −δ1 −ε0 −ε2 ε3
δ1 −δ2 1 δ0 −ε3 −ε0 ε1
δ2 δ1 −δ0 1 ε2 −ε1 ε0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

and
δ = v̂∆t and ε = q

∆t
2 .

A standard deviation L is derived from the current orientation but excludes the bias:

L =

−ε1 −ε2 −ε3
ε0 −ε3 ε2
ε3 ε0 −ε1
−ε2 ε1 ε0

1 0 0
0 1 0
0 0 1

This standard deviation L is now scaled with the standard deviation Q of the sensor axis.
The variance is then given by LQLT . This results in the recursion

Pk+1 = AkPkA
T
k + LkQL

T
k , where Q =

σ2
0 0 0

0 σ2
1 0

0 0 σ2
2

This completes the prediction step, that is now combined with additional sensor data to
improve the made prediction. The roll and pitch angles where both corrected using the
gravity vector, provided by the accelerometer, as both axis are aligned perpendicular to it.
Utilising this comes with the added advantage of always referencing both rotation axis to
the horizon. The roll Φ and pitch θ can be directly calculated given the gravity vector g:

Φ = arctan
(
gx
gz

)
θ = arctan

(
gy
‖gxz‖

)
Here the y-axis points in flight direction, the z-axis is the vertical axis, and gxz denotes
the projection of the gravity vector to the xy-plane. It should be noted here, that the
computed angles have to be adjusted for their sign to allow for full device inversion and
prevent division by 0. Therefore a new function atan(y, x) was introduced, that replaced all
conventional arctan operations:

atan(y, x) =

arctan(yx) + π if y > 0
arctan(yx) if y < 0
π if y > 0 and x = 0
0 if y < 0 and x = 0
undefined if x = 0 and y = 0

30 4.1. Digital signal processing

To obtain the measurement ẑ the reverse approach was taken by converting the state quater-
nion q into the corresponding gravity vector. After some calculations one gets:

ẑ = ζ

‖ζ‖
, where ζ =

 −2(q1q3 − q0q2)
−2(q0q1 + q2q3)
q2

0 − q2
1 − q2

2 + q2
3

This however results in a non-linear function to convert the quaternion q of the filter state into
the corresponding values. As a Kalman filter only works for linear systems the model had to
be adjusted. This was done by calculating the Jacobian matrix Ha for the measurements to
locally linearise the system. This implementation is also referred to as an extended Kalman
filter, meaning that its working envelope has been extended to non-linear systems. The
partial linearisation offers a good approximation given the system in question is not heavily
curved around the estimation range of the filter. For the Jacobian one finds

Ha = 2

 q2 −q3 q0 −q1 0 0 0
−q1 −q0 −q3 −q2 0 0 0
−q0 q1 q2 −q3 0 0 0

This matrix is now utilised like the normal measurement matrix, meaning that given the
accelerometer sensor variance σ2 = (σ2

0, σ
2
1, σ

2
2)T , the Kalman gain Ka can now be computed

as follows:

Ka = PHT
a (HaPH

T
a +R)−1, where R =

σ2
0 0 0

0 σ2
1 0

0 0 σ2
2

This results in the classic Kalman gain that is then multiplied with the measurement differ-
ence z − ẑ and added to the state x to perform the update step:

xk+1 = xk +Ka(z − ẑ), where z = g

‖g‖
Pk+1 = Pk −KaHaPk

Here, g is the gravity vector. The update step described above is not able to correct the
yaw axis, as it is parallel to gravity and therefore remains constant for all yaw changes. This
was overcome by adding the magnetic field vector into the equations, again with the added
benefit of the filter being automatically calibrated towards north. To calculate the device
heading the measured field vector m ∈ R3 had to be transferred from the sensor’s reference
frame to earth by rotating it around the state quaternion q, resulting in m′:

m′ = I− 2

 q2
1 − q2

2 q0q1 − q2q3 q0q2 + q1q3
q0q1 + q2q3 q2

0 − q2
2 q1q2 − q0q3

q0q2 − q1q3 q1q2 + q0q3 q2
0 − q2

1

m
The rotated vector now was projected onto earth’s horizon plane, giving the two dimensional
heading vector h:

h =
(
m′0
m′1

)
The yaw angle ψ can now be calculated using the atan(y, x) function defined above. Note
that the system is referenced to north, meaning that the yaw angle is always the same as
the aircraft’s heading, reducing the complexity:

ψ = atan(h1, h0)

4. Software 31

The new measurement ẑ is computed similar to above, by converting the quaternion into the
gravity vector, but with the addition of the magnetic heading ψ, that is computed from the
quaternion as follows:

ẑ =

−2(q1q3 − q0q2)
−2(q0q1 + q2q3)
q2

0 − q2
1 − q2

2 + q2
3

atan(2q1q2 + 2q0q3, 2q2
0 + 2q2

1 − 1)

Adding another dimension to the measurements z and ẑ also demands an updated measure-
ment Jacobian Hm:

Hm =

2q2 −2q1 −2q0 −4q2
0q3 + 4q2

1q3 − 2q3 − 8q1q2q0
−2q3 −2q0 2q1 4q2q

2
0 − 4q2

1q2 − 2q2 − 8q1q0q3
2q0 −2q3 2q2 2q1(2q1q1 + 2q0q0 − 1)
−2q1 −2q2 −2q3 2q0(2q0q0 + 2q1q1 − 1)

0 0 0 0
0 0 0 0
0 0 0 0

T

To get the measurement noise this time the variance from the accelerometer σ2
a and magne-

tometer σ2
m had to be combined with the gravity vector g magnetic field m as follows:

θ = arcsin(g0)

φ = arcsin
(
− g1

cos(θ)

)
This is implemented into

Rm = M

σ2
a0 0 0 0 0 0
0 σ2

a1 0 0 0 0
0 0 σ2

a2 0 0 0
0 0 0 σ2

m0 0 0
0 0 0 0 σ2

m0 0
0 0 0 0 0 σ2

m0

MT

where

M =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 (− cos(θ)(m2 sin(φ)−m1 cos(φ))
0 0 0 (−m2 cos(φ)2 sin(θ)−m0 cos(θ) cos(φ)−m2 sin(φ) sin(θ))
0 0 0 (m0 sinφ cos(θ +m1 sin(φ)2 sin(θ) +m1 cos(φ)2 sin(θ))

T

The result can now be used to compute the new Kalman gain:

Km = PHT
m(HmPH

T
m +Rm)−1

This gives the proposed algorithm two different update functions, making the filter more
flexible. As most magnetometers have a slower measurement rate than gyroscopes or ac-
celerometers due to physical limitations it is now possible to choose an update routine based
on the available data rather than waiting for it, resulting in a good performing attitude
estimator. (see Figure 4.5, an implemetation can be found at 6.5 and 6.6).

32 4.2. Control

0 20 40 60 80
samples

1

0

1

an
gl

e
[ra

d]

Roll Angle
uncorrected
extended kalman
madgwick

Figure 4.5: The system was put on a flat table and then tilted rapidly for two times.
The orange sections indicate when the sensor was laying flat on the surface, serving as a
reference for the roll, where φ = 0. The blue line serves to demonstrate the system drift
without any correction. Here the proposed algorithm was also compared to one proposed
by S. Madgwick. His approach is based on a gradient-descent algorithm, that gradually
reduces the accumulated sensor error.

4.2 Control

As described in Section 2.6 the aircraft is able to change its attitude by deflecting the control
surfaces. As these do not correspond directly to the desired outcome a control algorithm
had to be implemented. A classic optimal control problem can be described as a plant
(the aircraft) that has a state x ∈ Rn. Every state xk at timestep k can be derived from the
previous one xk−1 using a transfer function, represented by a matrix A ∈ Rn×n and unknown
external noise e:

xk+1 = Axk + ek (4.17)

The plant can be influenced by applying action u ∈ Rm. This action affects the plant state
x in a way specified by matrix B ∈ Rn×m. Therefore a discrete state space equation can be
formed using the known plant dynamics A and B:

xk+1 = Axk +Buk + ek (4.18)

The goal is now to find a policy that, given the current state xk results in the action uk
that drives the following plant states closest to a specified target y over a minimal amount
of iterations. This is done by a closed loop controller (see Figure 4.6), meaning that it gets
the current plant state as direct feedback to generate an appropriate response. To achieve
this two options where explored: Model Predictive Control (see [21]) and a modified version
of Proportional Integral Derivative Control (see [19]).

4.2.1 Model Predictive Control

Predictive controllers try to predict the plant’s behavior using the known dynamics A and B
to generate an efficient state-trajectory towards the desired outcome. For this a prediction
horizon h is set, that limits the iteration steps to project from every real plant state. The
control problem can also be further constrained by placing restrictions on the controller
output. This can be done to prevent the output from potentially damaging the plant. In the
case of an aircraft this could be over-deflection of the control surfaces that would damage
the hinges or abrupt changes that would pose an unnecessary load on the airframe.

4. Software 33

controller plantu xy

e

x

Figure 4.6: A closed feedback loop of a state-space system. Here y ∈ Rm is the target
state, u ∈ Rn the controller output, xRm the actual system state and e indicates external
influences on the system. The plant is the system to be controlled and is described with
the state space dynamics A ∈ Rm×m and B ∈ Rm×n.

The working principle of predictive controllers can now be illustrated on a tree diagram
(see Figure 4.7). The tree starts with the current state xk and then leads to an amount of
possible future states x0

k+1, ...x
n
k+1 (note that the superscript serves as an index and not as

an operator). Said amount then expands into even more possible states, that are reachable
with their associated action un and the iteration equation (4.18).

target state y

xk

x1(t+ ∆t) x2(t+ ∆t) xk(t+ ∆t)

u1
u2

uk

Figure 4.7: Prediction tree with the best possible branch (in red).

To quantify the error the plant would generate over a branch of the tree a cost function
f has to be defined. This function ranks every predicted state x on the branch on how
close it resembles the target state y. Finally the branch of the closest x is chosen with the
corresponding sequence of u’s that also fit any possible restrictions. A possible example of
such a cost function is:

f(x) = |x− y| (4.19)

Said function is often enhanced by assigning fixed weights to individual components, repre-
sented by a vector w ∈ Rn. This implementation allows the controller to prioritise certain
aspects of the system state, such as ones that are more relevant to the desired plant be-
haviour. Hence, equation (4.19) is modified as follows:

f(x) =
n∑
i=1

wi|xi − yi| (4.20)

34 4.2. Control

After finding a matching system trajectory that best minimises the cost function its root
action u is used as the actual controller output (see [21])., while the rest is discarded and
computed again in the next step.
The main advantage of the system is, that very complex plants even with cross-dependencies
between different state components can be modelled. Furthermore a large prediction hori-
zon is able to prevent overshoots, oscillation or the system being trapped inside a local
cost-minimum. The biggest downside to deploying this sort of algorithm however is the
computational load and complexity, especially considering the limited hardware of the pro-
posed model airplane.

4.2.2 Proportional Integral Derivative Controller

The classic Proportional Integral Derivative (PID) controller is one of the most common
algorithms used for closed-loop system control. Compared to more complex approaches it is
only applicable to individual components xk of the plant state x ∈ Rn. Therefore it is not
suitable for systems that feature strong cross-dependencies between different components of
the state vector. For simplicity, we now suppress the index and just write x instead of xk.
The algorithm works by applying a cost function f to the state component x with respect
to its corresponding target y to calculate the current plant error. In most cases this is
done by simply computing the difference. In this implementation however the difference was
additionally squared:

f(x) = (x− y)2. (4.21)

The reason for taking the square instead of the absolute value of the difference ist twofold:
lager errors are are punished more severely, and the square function is differentiable every-
where. The controller output u at time t is then calculated by taking the weighted sum
of the current error, the derivative of the cost function with respect to the time t and the
integrated error since t = 0. The corresponding tuning parameters are real numbers KD, KI

and KD:
u(t) = KP f(x(t)) +KI

∫ t

0
f(x(τ))dτ +KD

d

dt
f(x(t)). (4.22)

The values of x in the time interval [0, t] are results of the real-world plant, hence the value
of u(t) cannot be expressed mathematically since the values of x are only available in the
measurement time steps

ti = i∆t, i = 0, 1, . . . , k, with t = tk.

The integration and the derivative in (4.22) are then approximated by a Riemann sum and
a difference quotient:

∫ t

0
f(x(τ))dτ ≈

k∑
i=1

f(x(ti))∆t (4.23)

d

dt
f(x(t)) ≈ f(x(tk))− f(x(tk−1))

∆t (4.24)

The different weights KP , KI , KD are used to tune the controller to the desired behavior.
KP describes the controller’s proportional response to the current plant error. KI is used
to reduce error buildup that would be caused by the proportional part never reaching the
target state. This would lead to a steady increase of the error sum, giving the output more
authority than just the proportional. Finally KD is implemented to prevent overshoots. By

4. Software 35

tracking the change rate of the current error the controller can predict how the plant is going
to respond to a given u and can therefore be used to dampen the proportional and integral
components that would otherwise result in the system surpassing the target value, possibly
resulting in an oscillation.
As the airplane is constantly adjusting target y the controller had to be modified to provide
better responses. Rapid changes of the target value can lead to a situation called integral
buildup. As it is impossible for the plant to instantly reach the exact target value the
integrated error is increased at every target change. If this is repeated frequently the built-up
integrator slowly begins to corrupt the controller output. This can be overcome by resetting
the integral at every target adjustment. With a sufficiently high change rate however, one
can completely neglect the integrator part, as the frequent resets never allow the integral
to reach values of any significance. Therefore the error integrator was removed from the
proposed controller design. To optimise the controller further for fast target tracking a feed
forward path was implemented. This adds the current weighed state directly to the output
u(t):

u(t) = KP f(x(t)) +KD
d

dt
f(x(t)) +KFx(t) (4.25)

(see also [19]). In case of an airplane this can be interpreted as the pilot directly applying
controls to achieve a certain outcome and not just doing so after the plane deviated from its
intended path.

4.2.3 Implementation

After some experiments the results of the Model Predictive Controller where not able to
justify the added complexity compared to the simple PDFF Controller (see [23]). This is
further supported by the fact that an airplane’s pitch and roll angles are not sufficiently code-
pendent and therefore allow component individual controllers. As control surface deflection
causes a force to act on the airframe, the resulting angular velocity around the corresponding
axis was used as target variable, forming a single order control problem. This results in two
PDFF controllers controlling the plane’s roll and pitch rates by deflecting the ailerons and
elevator. This results in the ground commander now being able to control the turn rates
of the aircraft instead of directly deflecting its control surfaces. To manage the rudder a
similar approach was taken. As described above the rudder is mainly used to keep sideslip
to a minimum. Therefore the PDFF Controller’s target value was set to 0 and the feedback
system state the linear acceleration along the pitch axis. This would allow for fully auto-
matic rudder control, even while performing coordinated turns. To control the plane over
an absolute attitude and not just angular velocities a simplified part of the model predictive
controller was implemented. It consisted of the controller doing a prediction xpred based on
the current attitude x, angular rate x′ and the prediction horizon h.

xpred = x+ x′ · h (4.26)

From this predicted position one can calculate the angular velocity x′dem needed to instead
reach the target value y at the prediction horizon h. Here h is another unable parameter
that represents the airplane’s response time.

x′dem = y − xpred
h

(4.27)

x′dem can now be fed to the PDFF controller as a target value, reducing this second order
control problem to a first degree one. One additional benefit of the approach above is its

36 4.2. Control

tangential nature as it approaches a constant target value. This has a damping effect on
the plane while tracking a certain attitude, greatly reducing unwanted oscillation, while still
being reactive to externally induced positional errors (see Figure 4.8).

0 200 400 600 800 1000 1200
samples

20

10

0

10

20

an
gl

e
Roll Angle

value
target

0 200 400 600 800 1000 1200
samples

1.5

1.0

0.5

0.0

ve
lo

cit
y

Roll Rate

value
target

0 200 400 600 800 1000 1200
samples

0.05

0.00

0.05

0.10

ac
tio

n

Controller Action

output

Figure 4.8: This diagram shows the position tracking servo inside a simulation with artifi-
cially added turbulence.

This forms the attitude servo system of the FBW-controller. The pilot can command the
aircraft’s attitude over the turn rates and the system tracks the resulting angle. This allows
the controller to limit the attitude to safe angles and also allows the plane to maintain the
given pitch and roll even while experiencing external forces without any additional pilot
input.

5Conclusion

This finalises the project, resulting in a working model airplane that was used to develop a
fly by wire system. The system consisted of an altimeter, accelerometer and AHRS system,
forming a basic inertial navigation system. The implemented filters are flexible and easily
adaptable to include more state variables and support redundant sensors. The controller is
able to control the flight control surfaces, that have all been motorised, accepting either the
desired attitude angles or turning rates for roll and pitch as an input. This forms a good
foundation to add a full autopilot to the system. The main requirement for this would be the
addition of a GPS receiver giving the plane absolute positioning capability and also providing
additional altitude data that could be fused into the altimeter. The main challenge of the
project was its broad range of different topics. It was quite difficult to cover and document
every subject in enough detail to get acceptable results, especially given the fact, that most
of the fields involved are not covered in the school curriculum, requiring extensive research.

37

6Appendix: Code

This chapter contains a selection of the most important pieces of code that where used for
testing and in the flight controller.

1 # ifndef SBUS_h
2 # define SBUS_h
3

4 # include " Arduino .h"
5

6 # define SBUS_BAUD 100000
7 # define SBUS_TIMEOUT 7000
8 # define SBUS_HEADER 0x0F
9 # define SBUS_END 0x00

10 # define SBUS2_END 0x04
11 # define SBUS_PAYLOAD 24
12 # define SBUS_FAILSAFE 0x08
13 # define SBUS_LOSS 0x04
14 # define SBUS_CHANNELS 16
15

16 class SBUS{
17 public :
18 SBUS(HardwareSerial & bus);
19 void start ();
20 bool read(uint16_t * channels , bool* failsafe , bool* lost_packet);
21

22 private :
23 HardwareSerial & bus;
24 bool terminated ;
25 uint8_t buffer [SBUS_PAYLOAD];
26

27 bool parse ();
28 };
29

30 #endif

Code 6.1: The header file of the custom SBus implementation.

1 # include "SBUS.h"
2

3 SBUS :: SBUS(HardwareSerial & bus){
4 this ->bus = &bus;
5 }
6

7 void SBUS :: start (){
8 this ->index = 0;
9 this ->bus ->begin(SBUS_BAUD , SERIAL_8E2 , 16, 17, true , 1000);

10 }
11

12 bool SBUS :: parse (){

39

40

13 // check for timeout
14 if((micros () - this -> ts_prev) > SBUS_TIMEOUT){
15 this ->index = 0;
16 }
17

18 // read uart bytes
19 while(this ->bus -> available () > 0){
20 this -> ts_prev = micros ();
21 uint8_t current = this ->bus ->read ();
22

23 if(this ->index == 0){
24 // find header
25 if(current == SBUS_HEADER && this -> terminated){
26 this ->index += 1;
27 }
28 }else{
29 uint8_t pointer = this ->index - 1;
30

31 if(pointer < SBUS_PAYLOAD){
32 this -> buffer [pointer] = current ;
33 this ->index ++;
34

35 }else{
36 this ->index = 0;
37 this -> terminated = (current == SBUS_END || (current & 0x0F) ==

SBUS2_END);
38 return this -> terminated && (pointer == SBUS_PAYLOAD);
39 }
40 }
41

42 this -> terminated = (current == SBUS_END || (current & 0x0F) == SBUS2_END)
;

43 }
44

45 // incomplete packet
46 return false;
47 }
48

49 bool SBUS :: read(uint16_t * channels , bool* failsafe , bool* lost_packet){
50 if(parse ()){
51

52 // receiver state info
53 if(failsafe){
54 * failsafe = this -> buffer [22] & SBUS_FAILSAFE ;
55 }
56

57 if(lost_packet){
58 * failsafe = this -> buffer [22] & SBUS_LOSS ;
59 }
60

61 // split payload into 11- bit values
62 if(channels){
63 channels [0] = (uint16_t) ((this -> buffer [0] | this -> buffer [1] << 8) & 0

x07FF);
64 channels [1] = (uint16_t) ((this -> buffer [1] >> 3 | this -> buffer [2] <<

5) & 0 x07FF);
65 channels [2] = (uint16_t) ((this -> buffer [2] >> 6 | this -> buffer [3] << 2

|this -> buffer [4] << 10) & 0x07FF);
66 channels [3] = (uint16_t) ((this -> buffer [4] >> 1 | this -> buffer [5] <<

7) & 0 x07FF);
67 channels [4] = (uint16_t) ((this -> buffer [5] >> 4 | this -> buffer [6] <<

4) & 0 x07FF);

6. Appendix: Code 41

68 channels [5] = (uint16_t) ((this -> buffer [6] >> 7 | this -> buffer [7] << 1
| this -> buffer [8] << 9) & 0x07FF);

69 channels [6] = (uint16_t) ((this -> buffer [8] >> 2 | this -> buffer [9] <<
6) & 0x07FF);

70 channels [7] = (uint16_t) ((this -> buffer [9] >> 5 | this -> buffer [10]<<
3) & 0x07FF);

71 channels [8] = (uint16_t) ((this -> buffer [11] | this -> buffer [12] << 8) &
0x07FF);

72 channels [9] = (uint16_t) ((this -> buffer [12] >> 3| this -> buffer [13] <<
5) & 0x07FF);

73 channels [10] = (uint16_t) ((this -> buffer [13] >> 6| this -> buffer [14] <<
2 | this -> buffer [15] << 10) & 0x07FF);

74 channels [11] = (uint16_t) ((this -> buffer [15] >> 1| this -> buffer [16] <<
7) & 0x07FF);

75 channels [12] = (uint16_t) ((this -> buffer [16] >> 4| this -> buffer [17] <<
4) & 0x07FF);

76 channels [13] = (uint16_t) ((this -> buffer [17] >> 7| this -> buffer [18] <<
1 | this -> buffer [19] << 9) & 0x07FF);

77 channels [14] = (uint16_t) ((this -> buffer [19] >> 2| this -> buffer [20] <<
6) & 0x07FF);

78 channels [15] = (uint16_t) ((this -> buffer [20] >> 5| this -> buffer [21] <<
3) & 0x07FF);

79 }
80 return true;
81 }
82 return false;
83 }

Code 6.2: The implementation of the SBus software interface as described in Section 3.2.
It is an improved and optimised version of the code by B. Taylor from Bolderflight.

1 # ifndef ADVMATH_h
2 # define ADVMATH_h
3

4 // set memory range to 0x00
5 void clear(float* in , int length);
6

7 // clone memory range
8 void clone(float* in , int length , float* out);
9

10 // add memory ranges
11 void add(float * in_a , float* in_b , int length , float* out);
12

13 // subtract memory ranges
14 void subtract (float* in_a , float* in_b , int length , float* out);
15

16 // subtract range from identity matrix [size x size]
17 void idSubtract (float* in , int size , float* out);
18

19 // multiply memory range with scalar
20 void scale(float* in , float value , int length , float* out);
21

22 // normalise memory range
23 void normalise (float* in , int length , float* out);
24

25 // store transposed copy of matrix [m x n]
26 void transpose (float* in , int m, int n, float* out);
27

28 // matrix multiplication of [m x c] and [c x n], stores copy
29 void multiply (float* in_a , float* in_b , int m, int c, int n, float* out);
30

31 // matrix multiplication of [m x c] and [n x c]^T, stores copy

42

32 void transMultiply (float* in , float* in_t , int m, int c, int n, float* out);
33

34 // invert matrix [size x size]
35 bool invert (float* in , int size , float* out);
36

37 // compare memory ranges
38 bool equals (float* in_a , float* in_b , int length);
39

40 // convert quaternion to euler angles
41 void getEuler (float* quat , float* euler);
42

43 // convert euler angles to quaternion
44 void getQuat (float* euler , float* quat);
45

46 // quaternion multiplication , stores copy
47 void multiplyQuat (float* p, float* q, float* out);
48

49 // rotate vector by quaternion , stores copy
50 void axisRotate (float* vector , float* quat , float* out);
51

52 // angle difference , clamps PI * 2
53 float enclosed (float a, float b);
54

55 #endif

Code 6.3: The header file of the custom vector math library.

1 # include " Arduino .h"
2 # include " AdvMath .h"
3

4 void clear(float* in , int length){
5 memset (in , 0x00 , length * 4);
6 }
7

8 void clone(float* in , int length , float* out){
9 memcpy (out , in , length * 4);

10 }
11

12 void add(float* in_a , float* in_b , int length , float* out){
13 for(int i = 0; i < length ; i++){
14 out[i] = in_a[i] + in_b[i];
15 }
16 }
17

18 void subtract (float* in_a , float* in_b , int length , float* out){
19 for(int i = 0; i < length ; i++){
20 out[i] = in_a[i] - in_b[i];
21 }
22 }
23

24 void idSubtract (float* in , int size , float* out){
25 for(int i = 0; i < size * size; i++){
26 out[i] = (i / size == i % size ? 1.0 : 0.0) - in[i];
27 }
28 }
29

30 void scale(float* in , float value , int length , float* out){
31 for(int i = 0; i < length ; i++){
32 out[i] = in[i] * value;
33 }
34 }
35

6. Appendix: Code 43

36 void normalise (float* in , int length , float* out){
37 float mag_sq = 0.0;
38

39 for(int i = 0; i < length ; i++){
40 mag_sq += in[i] * in[i];
41 }
42

43 scale(in , 1.0 / sqrt(mag_sq), length , out);
44 }
45

46 void transpose (float* in , int m, int n, float* out){
47 for(int i = 0; i < m; i++){
48 for(int j = 0; j < n; j++){
49 out[m * j + i] = in[n * i + j];
50 }
51 }
52 }
53

54 void multiply (float* in_a , float* in_b , int m, int c, int n, float* out){
55 for(int i = 0; i < m; i++){
56 for(int j = 0; j < n; j++){
57 out[n * i + j] = 0.0;
58

59 for(int k = 0; k < c; k++){
60 out[n * i + j] += in_a[c * i + k] * in_b[n * k + j];
61 }
62 }
63 }
64 }
65

66 void transMultiply (float* in , float* in_t , int m, int c, int n, float* out){
67 for(int i = 0; i < m; i++){
68 for(int j = 0; j < n; j++){
69 out[n * i + j] = 0.0;
70

71 for(int k = 0; k < c; k++){
72 out[n * i + j] += in[c * i + k] * in_t[c * j + k];
73 }
74 }
75 }
76 }
77

78 bool invert (float* in , int size , float* out){
79 int pivrow = 0;
80 int pivrows [size];
81

82 clone(in , size * size , out);
83

84 for(int k = 0; k < size; k++){
85 float value = 0;
86 for(int i = k; i < size; i++){
87 float entry = fabs(out[i * size + k]);
88

89 if(entry >= value){
90 value = entry;
91 pivrow = i;
92 }
93 }
94

95 // singular matrix check
96 if(out[pivrow * size + k] == 0.0){
97 return false;

44

98 }
99

100 if(pivrow != k){
101 for(int j = 0; j < size; j++){
102 float tmp = out[k * size + j];
103 out[k * size + j] = out[pivrow * size + j];
104 out[pivrow * size + j] = tmp;
105 }
106 }
107

108 pivrows [k] = pivrow ;
109

110 float inv = 1.0 / out[k * size + k];
111 out[k * size + k] = 1.0;
112

113 for(int j = 0; j < size; j++){
114 out[k * size + j] *= inv;
115 }
116

117 for(int i = 0; i < size; i++){
118 if(i != k){
119 float tmp = out[i * size + k];
120 out[i * size + k] = 0.0;
121 for(int j = 0; j < size; j++){
122 out[i * size + j] -= out[k * size + j] * tmp;
123 }
124 }
125 }
126 }
127

128 for(int k = size - 1; k >= 0; k--){
129 if(pivrows [k] != k){
130 for(int i = 0; i < size; i++){
131 float tmp = out[i * size + k];
132 out[i * size + k] = out[i * size + pivrows [k]];
133 out[i * size + pivrows [k]] = tmp;
134 }
135 }
136 }
137

138 return true;
139 }
140

141 bool equals (float* in_a , float* in_b , int length){
142 for(int i = 0; i < length ; i++){
143 if(in_a[i] != in_b[i]){
144 return false;
145 }
146 }
147

148 return true;
149 }
150

151 void getEuler (float* quat , float* euler){
152 euler [0] = atan2 (2.0 * quat [2] * quat [3] + 2.0 * quat [0] * quat [1], 2.0 *

quat [0] * quat [0] + 2.0 * quat [3] * quat [3] - 1.0);
153 euler [1] = asin (-2.0 * quat [1] * quat [3] + 2.0 * quat [0] * quat [2]);
154 euler [2] = atan2 (2.0 * quat [1] * quat [2] + 2.0 * quat [0] * quat [3], 2.0 *

quat [0] * quat [0] + 2.0 * quat [1] * quat [1] - 1.0);
155 }
156

157 void getQuat (float* euler , float* quat){

6. Appendix: Code 45

158 float cos_ [3] , sin_ [3];
159

160 for(int i = 0; i < 3; i++){
161 cos_[i] = cos(euler[i] / 2.0);
162 sin_[i] = sin(euler[i] / 2.0);
163 }
164

165 quat [0] = cos_ [2] * cos_ [1] * cos_ [0] + sin_ [2] * sin_ [1] * sin_ [0];
166 quat [1] = cos_ [2] * cos_ [1] * sin_ [0] - sin_ [2] * sin_ [1] * cos_ [0];
167 quat [2] = cos_ [2] * sin_ [1] * cos_ [0] + sin_ [2] * cos_ [1] * sin_ [0];
168 quat [3] = sin_ [2] * cos_ [1] * cos_ [0] - cos_ [2] * sin_ [1] * sin_ [0];
169 }
170

171 void multiplyQuat (float* p, float* q, float* out){
172

173 out [0] = p[0] * q[0] - (p[1] * q[1] + p[2] * q[2] + p[3] * q[3]);
174 out [1] = p[0] * q[1] + q[0] * p[1] + p[2] * q[3] - p[3] * q[2];
175 out [2] = p[0] * q[2] + q[0] * p[2] + p[3] * q[1] - p[1] * q[3];
176 out [3] = p[0] * q[3] + q[0] * p[3] + p[1] * q[2] - p[2] * q[1];
177 }
178

179 float enclosed (float a, float b){
180 float angle = fmod(a - b, PI * 2);
181

182 if(angle >= PI){
183 angle -= (PI * 2);
184 }
185

186 return angle;
187 }
188

189 void axisRotate (float* vector , float* quat , float* out){
190 float r = quat [0];
191 float i = quat [1];
192 float j = quat [2];
193 float k = quat [3];
194

195 out [0] = 2 * (r * vector [2] * j + i * vector [2] * k - r * vector [1] * k + i
* vector [1] * j) + vector [0] * (r * r + i * i - j * j - k * k);

196 out [1] = 2 * (r * vector [0] * k + i * vector [0] * j - r * vector [2] * i + j
* vector [2] * k) + vector [1] * (r * r - i * i + j * j - k * k);

197 out [2] = 2 * (r * vector [1] * i - r * vector [0] * j + i * vector [0] * k + j
* vector [1] * k) + vector [2] * (r * r - i * i - j * j + k * k);

198 }

Code 6.4: The implementation of the custom vector math library. It was especially designed
to be computation and memory efficient. This was done by utilising pointers to the memory
locations containing the vectors and matrices. The code is mostly self written with a few
exceptions of code ported from other projects.

1 # ifndef AHRS_h
2 # define AHRS_h
3

4 # include " AdvMath .h"
5 # include " Arduino .h"
6

7 class AHRS{
8 public :
9 void initialise (uint32_t sample_time);

10 bool update (float* gyr , float* acc , float* mag);
11

12 float getRoll ();

46

13 float getPitch ();
14 float getYaw ();
15

16 private :
17

18 bool sample (float* gyr , float* acc , float* mag);
19 void setup ();
20

21 void gyrUpdate (float dt , float* gyr);
22 void accUpdate (float* acc_raw);
23 void magUpdate (float* mag_raw , float* acc_raw);
24

25 // flow management
26 uint32_t init_time ;
27 uint32_t ts_prev ;
28 bool running ;
29 bool started ;
30

31 // used for sensor sampling
32 uint32_t gyr_count ;
33 uint32_t acc_count ;
34 uint32_t mag_count ;
35 uint32_t quat_count ;
36

37 float gyr_bias [3], gyr_m2 [3];
38 float acc_mean [3], acc_m2 [3];
39 float mag_mean [3], mag_m2 [3];
40 float quat_mean [4], quat_m2 [4];
41

42 float x_ [7]; // filter state
43 float euler [3]; // euler rotation
44 float initial_euler [3]; // start reference
45

46 float P_[7 * 7]; // state uncertainty
47 float Q_[3 * 3]; // process noise
48 float Ra_ [3 * 3]; // sensor noise
49 float R_[6 * 6]; // sensor noise
50 float M_[4 * 6]; // output matrix
51 float Ma_ [3 * 3]; // output matrix
52

53 float K_[7 * 4]; // kalman gain
54 float Ka_ [7 * 3]; // kalman gain
55 };
56

57 #endif

Code 6.5: The header file of the AHRS system. See Sections 3.3, 4.1.3, and 4.1.4.

1 # include "AHRS.h"
2 # include " AdvMath .h"
3 # include " Arduino .h"
4

5 void AHRS :: initialise (uint32_t sample_time){
6 this -> init_time = sample_time ;
7 this -> running = false;
8 this -> started = false;
9

10 this -> gyr_count = 0;
11 this -> acc_count = 0;
12 this -> mag_count = 0;
13 this -> quat_count = 0;
14

6. Appendix: Code 47

15 clear(this ->euler , 3);
16 clear(this -> initial_euler , 3);
17

18 clear(this ->gyr_bias , 3); clear(this ->gyr_m2 , 3);
19 clear(this ->acc_mean , 3); clear(this ->acc_m2 , 3);
20 clear(this ->mag_mean , 3); clear(this ->mag_m2 , 3);
21 clear(this ->quat_mean , 4); clear(this ->quat_m2 , 4);
22 }
23

24 bool AHRS :: update (float* gyr , float* acc , float* mag){
25 if(!this -> running){
26 if(!this -> started){
27 this -> started = true;
28 this -> ts_prev = micros ();
29 }
30

31 if(this -> sample (gyr , acc , mag) && (micros () - this -> ts_prev) >= this ->
init_time){

32 this ->setup ();
33 }
34 }else{
35 uint32_t now = micros ();
36 float dt = ((float)(now - this -> ts_prev)) / 1000000.0 f;
37 this -> ts_prev = now;
38

39 this -> gyrUpdate (dt , gyr);
40

41 if(acc != NULL){
42 if(mag != NULL){
43 this -> magUpdate (mag , acc);
44 }else{
45 this -> accUpdate (acc);
46 }
47 }
48

49 float norm [4], quat [4] = {this ->x_[0], this ->x_[1], this ->x_[2], this ->x_
[3]};

50

51 normalise (quat , 4, norm);
52 getEuler (norm , this ->euler);
53 }
54

55 return this -> running ;
56 }
57

58 void AHRS :: setup (){
59 clone(this ->quat_mean , 4, this ->x_);
60 clone(this ->gyr_bias , 3, &this ->x_ [4]);
61

62 /* store initial position */ {
63 float quat [4];
64 normalise (this ->quat_mean , 4, quat);
65 getEuler (quat , this -> initial_euler);
66 }
67

68 float gyr_variance [3], acc_variance [3], mag_variance [3], quat_variance [4];
69

70 scale(this ->gyr_m2 , 1.0f / (this -> gyr_count - 1), 3, gyr_variance);
71 scale(this ->acc_m2 , 1.0f / (this -> acc_count - 1), 3, acc_variance);
72 scale(this ->mag_m2 , 1.0f / (this -> mag_count - 1), 3, mag_variance);
73 scale(this ->quat_m2 , 1.0f / (this -> quat_count - 1), 4, quat_variance);
74

48

75 clear(this ->P_ , 7 * 7);
76 clear(this ->Q_ , 3 * 3);
77 clear(this ->Ra_ , 3 * 3);
78 clear(this ->R_ , 6 * 6);
79 clear(this ->M_ , 4 * 6);
80 clear(this ->Ma_ , 3 * 3);
81

82 // initialize state covariance
83 this ->P_ [0] = quat_variance [0];
84 this ->P_ [8] = quat_variance [1];
85 this ->P_ [16] = quat_variance [2];
86 this ->P_ [24] = quat_variance [3];
87 this ->P_ [32] = gyr_variance [0];
88 this ->P_ [40] = gyr_variance [1];
89 this ->P_ [48] = gyr_variance [2];
90

91 // gyroscope covariance matrix
92 this ->Q_ [0] = gyr_variance [0];
93 this ->Q_ [4] = gyr_variance [1];
94 this ->Q_ [8] = gyr_variance [2];
95

96 // accelerometer covariance matrix
97 this ->Ra_ [0] = acc_variance [0];
98 this ->Ra_ [4] = acc_variance [1];
99 this ->Ra_ [8] = acc_variance [2];

100

101 // accelerometer & magnetometer covariance matrix
102 this ->R_ [0] = acc_variance [0];
103 this ->R_ [7] = acc_variance [1];
104 this ->R_ [14] = acc_variance [2];
105 this ->R_ [21] = mag_variance [0];
106 this ->R_ [28] = mag_variance [1];
107 this ->R_ [35] = mag_variance [2];
108

109 // output matrix
110 this ->M_ [0] = 1.0f;
111 this ->M_ [7] = 1.0f;
112 this ->M_ [14] = 1.0f;
113 this ->Ma_ [0] = 1.0f;
114 this ->Ma_ [4] = 1.0f;
115 this ->Ma_ [8] = 1.0f;
116

117 this -> ts_prev = micros ();
118 this -> running = true;
119 }
120

121 bool AHRS :: sample (float* gyr , float* acc , float* mag){
122 if(gyr != NULL){
123 this -> gyr_count += 1;
124

125 for(int i = 0; i < 3; i++){
126 float delta = gyr[i] - this -> gyr_bias [i];
127 this -> gyr_bias [i] += delta / ((float) this -> gyr_count);
128 this -> gyr_m2 [i] += delta * (gyr[i] - this -> gyr_bias [i]);
129 }
130 }
131

132 if(acc != NULL){
133 this -> acc_count += 1;
134

135 for(int i = 0; i < 3; i++){
136 float delta = acc[i] - this -> acc_mean [i];

6. Appendix: Code 49

137 this -> acc_mean [i] += delta / ((float) this -> acc_count);
138 this -> acc_m2 [i] += delta * (acc[i] - this -> acc_mean [i]);
139 }
140 }
141

142 if(mag != NULL){
143 this -> mag_count += 1;
144

145 for(int i = 0; i < 3; i++){
146 float delta = mag[i] - this -> mag_mean [i];
147 this -> mag_mean [i] += delta / ((float) this -> mag_count);
148 this -> mag_m2 [i] += delta * (mag[i] - this -> mag_mean [i]);
149 }
150 }
151

152 if(acc != NULL && mag != NULL){
153 this -> quat_count += 1;
154

155 // estimate the quaternion for initial state covariance
156 float acc_ [3], mag_ [3], euler [3], quat [4];
157 normalise (acc , 3, acc_);
158 normalise (mag , 3, mag_);
159

160 euler [1] = asin(acc_ [0]);
161 euler [0] = asin(-acc_ [1] / (cos(euler [1])));
162 euler [2] = atan2(mag_ [2] * sin(euler [0]) - mag_ [1] * cos(euler [0]) ,
163 mag_ [0] * cos(euler [1]) + mag_ [1] * sin(euler [1]) * sin(euler [0]) +

mag_ [2] * sin(euler [1]) * cos(euler [0]));
164

165 getQuat (euler , quat);
166

167 for(int i = 0; i < 4; i++){
168 float delta = quat[i] - this -> quat_mean [i];
169 this -> quat_mean [i] += delta / ((float) this -> quat_count);
170 this -> quat_m2 [i] += delta * (quat[i] - this -> quat_mean [i]);
171 }
172 }
173

174 // return if enough samples are present
175 return (this -> gyr_count > 2 && this -> acc_count > 2 && this -> mag_count > 2

&& this -> quat_count > 2);
176 }
177

178 void AHRS :: gyrUpdate (float dt , float* gyr){
179 float dx = 0.5f * dt * (gyr [0] - this ->x_ [4]);
180 float dy = 0.5f * dt * (gyr [1] - this ->x_ [5]);
181 float dz = 0.5f * dt * (gyr [2] - this ->x_ [6]);
182

183 float dx0 = 0.5f * dt * this ->x_ [0];
184 float dx1 = 0.5f * dt * this ->x_ [1];
185 float dx2 = 0.5f * dt * this ->x_ [2];
186 float dx3 = 0.5f * dt * this ->x_ [3];
187

188 // state transition matrix
189 float F[7 * 7];
190 clear(F, 49);
191

192 F[0] = 1.0f; F[1] = -dx; F[2] = -dy; F[3] = -dz; F[4] = dx1;
F[5] = dx2; F[6] = dx3;

193 F[7] = dx; F[8] = 1.0f; F[9] = dz; F[10] = -dy; F[11] = -dx0;
F[12] = -dx2; F[13] = dx3;

194 F[14] = dy; F[15] = -dz; F[16] = 1.0f; F[17] = dx; F[18] = -dx3;

50

F[19] = -dx0; F[20] = dx1;
195 F[21] = dz; F[22] = dy; F[23] = -dx; F[24] = 1.0f; F[25] = dx2;

F[26] = -dx1; F[27] = dx0;
196

197 F[32] = 1.0f; F[40] = 1.0f; F[48] = 1.0f;
198

199 // process devia
200 float L[7 * 3];
201 clear(L, 21);
202

203 L[0] = -dx1; L[1] = -dx2; L[2] = -dx3;
204 L[3] = dx0; L[4] = -dx3; L[5] = dx2;
205 L[6] = dx3; L[7] = dx0; L[8] = -dx1;
206 L[9] = -dx2; L[10] = dx1; L[11] = dx0;
207 L[12] = 1.0f; L[16] = 1.0f; L[20] = 1.0f;
208

209 /* P = F * P * F.T + L * Q * L.T */ {
210 float tmp_a [49] , tmp_b [49] , tmp_c [21];
211

212 multiply (F, this ->P_ , 7, 7, 7, tmp_b);
213 transMultiply (tmp_b , F, 7, 7, 7, tmp_a);
214

215 multiply (L, this ->Q_ , 7, 3, 3, tmp_c);
216 transMultiply (tmp_c , L, 7, 3, 7, tmp_b);
217

218 add(tmp_a , tmp_b , 49, this ->P_);
219 }
220

221 /* x = F * x */ {
222 float tmp [7];
223

224 multiply (F, this ->x_ , 7, 7, 1, tmp);
225 clone(tmp , 7, this ->x_);
226 }
227 }
228

229 void AHRS :: accUpdate (float* acc_raw){
230 float acc [3];
231 normalise (acc_raw , 3, acc);
232

233 // measurement jacobian
234 float Ha[3 * 7];
235 clear(Ha , 21);
236

237 float dq0 = 2.0f * this ->x_ [0];
238 float dq1 = 2.0f * this ->x_ [1];
239 float dq2 = 2.0f * this ->x_ [2];
240 float dq3 = 2.0f * this ->x_ [3];
241

242 Ha [0] = dq2; Ha [1] = -dq3; Ha [2] = dq0; Ha [3] = -dq1;
243 Ha [7] = -dq1; Ha [8] = -dq0; Ha [9] = -dq3; Ha [10] = -dq2;
244 Ha [14] = -dq0; Ha [15] = dq1; Ha [16] = dq2; Ha [17] = -dq3;
245

246 /* Ka = P * Ha.T * (Ha * P * Ha.T + Ma * Ra * Ma.T)^-1 */ {
247 float tmp_a [21] , tmp_b [9], tmp_c [9];
248

249 multiply (Ha , this ->P_ , 3, 7, 7, tmp_a);
250 transMultiply (tmp_a , Ha , 3, 7, 3, tmp_b);
251

252 multiply (this ->Ma_ , this ->Ra_ , 3, 3, 3, tmp_a);
253 transMultiply (tmp_a , this ->Ma_ , 3, 3, 3, tmp_c);
254

6. Appendix: Code 51

255 add(tmp_b , tmp_c , 9, tmp_a);
256 invert (tmp_a , 3, tmp_b);
257

258 transMultiply (this ->P_ , Ha , 7, 7, 3, tmp_a);
259 multiply (tmp_a , tmp_b , 7, 3, 3, this ->Ka_);
260 }
261

262 /* x = x + Ka * (acc - ha) */ {
263 float ha[3], tmp [7];
264

265 float sq0 = this ->x_ [0] * this ->x_ [0];
266 float sq1 = this ->x_ [1] * this ->x_ [1];
267 float sq2 = this ->x_ [2] * this ->x_ [2];
268 float sq3 = this ->x_ [2] * this ->x_ [2];
269

270 ha [0] = acc [0] - (-2.0f * (this ->x_ [1] * this ->x_ [3] - this ->x_ [0] * this
->x_ [2]));

271 ha [1] = acc [1] - (-2.0f * (this ->x_ [0] * this ->x_ [1] + this ->x_ [2] * this
->x_ [3]));

272 ha [2] = acc [2] + sq0 - sq1 - sq2 + sq3;
273

274 multiply (this ->Ka_ , ha , 7, 3, 1, tmp);
275 add(this ->x_ , tmp , 7, this ->x_);
276 }
277

278 /* P = (I - Ka * Ha) * P */ {
279 float tmp_a [49] , tmp_b [49];
280

281 multiply (this ->Ka_ , Ha , 7, 3, 7, tmp_a);
282 idSubtract (tmp_a , 7, tmp_a);
283 multiply (tmp_a , this ->P_ , 7, 7, 7, tmp_b);
284

285 clone(tmp_b , 7 * 7, this ->P_);
286 }
287 }
288

289 void AHRS :: magUpdate (float* mag_raw , float* acc_raw){
290 float acc [4] , mag [3];
291 normalise (acc_raw , 3, acc);
292 normalise (mag_raw , 3, mag);
293

294 float dq0 = 2.0f * this ->x_ [0];
295 float dq1 = 2.0f * this ->x_ [1];
296 float dq2 = 2.0f * this ->x_ [2];
297 float dq3 = 2.0f * this ->x_ [3];
298

299 float sq0 = this ->x_ [0] * this ->x_ [0];
300 float sq1 = this ->x_ [1] * this ->x_ [1];
301

302 // measurement jacobian
303 float H[4 * 7];
304 clear(H, 28);
305

306 H[0] = dq2; H[1] = -dq3; H[2] = dq0; H[3] = -dq1;
307 H[7] = -dq1; H[8] = -dq0; H[9] = -dq3; H[10] = -dq2;
308 H[14] = -dq0; H[15] = dq1; H[16] = dq2; H[17] = -dq3;
309

310 H[21] = (-4.0f * sq0*this ->x_ [3] + 4.0f * sq1 * this ->x_ [3] - dq3 - 8.0f *
this ->x_ [1] * this ->x_ [2] * this ->x_ [0]);

311 H[22] = (4.0f * this ->x_ [2] * sq0 - 4.0f * sq1 * this ->x_ [2] - dq2 - 8.0f *
this ->x_ [1] * this ->x_ [0] * this ->x_ [3]);

312 H[23] = dq1 * (dq1 * this ->x_ [1] + dq0 * this ->x_ [0] - 1.0f);

52

313 H[24] = dq0 * (dq0 * this ->x_ [0] + dq1 * this ->x_ [1] - 1.0f);
314

315 float h_scale = pow(dq1 * this ->x_ [2] + dq0 * this ->x_[3], 2.0f) + pow(dq1
* this ->x_ [1] + dq0 * this ->x_ [0] - 1.0f, 2.0f);

316

317 for(int i = 21; i < 25; i++) H[i] /= h_scale ;
318

319 // noise jacobian
320 float theta = asin(acc [0]);
321 float ct = cos(theta);
322

323 float phi = asin(-acc [1] / ct);
324 float st = sin(theta);
325 float cp = cos(phi);
326 float sp = sin(phi);
327

328 float m_scale = pow(mag [2] * sp - mag [1] * cp , 2.0f) + pow(mag [0] * ct +
mag [2] * cp * st + mag [1] * sp * st , 2.0f);

329

330 this ->M_ [21] = (-ct * (mag [2]* sp - mag [1]* cp));
331 this ->M_ [22] = (-mag [2] * cp * cp * st - mag [0] * ct * cp - mag [2] * sp *

sp * st);
332 this ->M_ [23] = (mag [0] * sp * ct + mag [1] * sp * sp * st + mag [1] * cp * cp

* st);
333

334 for(int i = 21; i < 24; i++) this ->M_[i] /= m_scale ;
335

336 /* Km = P * H.T * (H * P * H.T + M * R * M.T)^-1 */ {
337 float tmp_a [28] , tmp_b [16] , tmp_c [28];
338

339 multiply (H, this ->P_ , 4, 7, 7, tmp_a);
340 transMultiply (tmp_a , H, 4, 7, 4, tmp_b);
341

342 multiply (this ->M_ , this ->R_ , 4, 6, 6, tmp_a);
343 transMultiply (tmp_a , this ->M_ , 4, 6, 4, tmp_c);
344

345 add(tmp_b , tmp_c , 16, tmp_a);
346 invert (tmp_a , 4, tmp_b);
347

348 transMultiply (this ->P_ , H, 7, 7, 4, tmp_a);
349 multiply (tmp_a , tmp_b , 7, 4, 4, this ->K_);
350 }
351

352 /* x += K * (acc - h) */ {
353 float h[4], tmp [7];
354

355 acc [3] = atan2(mag [2] * sp - mag [1] * cp , mag [0] * ct + mag [1] * st * sp
+ mag [2] * st * cp);

356

357 h[0] = acc [0] - (-2.0f * (this ->x_ [1] * this ->x_ [3] - this ->x_ [0] * this
->x_ [2]));

358 h[1] = acc [1] - (-2.0f * (this ->x_ [0] * this ->x_ [1] + this ->x_ [2] * this
->x_ [3]));

359 h[2] = acc [2] - (-(sq0 - sq1 - this ->x_ [2] * this ->x_ [2] + this ->x_ [3] *
this ->x_ [3]));

360 h[3] = acc [3] - atan2 (2.0f * this ->x_ [1] * this ->x_ [2] + 2.0f * this ->x_
[0] * this ->x_[3], 2.0f * sq0 + 2.0f * sq1 - 1.0f);

361

362 multiply (this ->K_ , h, 7, 4, 1, tmp);
363 add(this ->x_ , tmp , 7, this ->x_);
364 }
365

6. Appendix: Code 53

366 /* P = (I - K * H) * P */ {
367 float tmp_a [49] , tmp_b [49];
368

369 multiply (this ->K_ , H, 7, 4, 7, tmp_a);
370 idSubtract (tmp_a , 7, tmp_a);
371

372 multiply (tmp_a , this ->P_ , 7, 7, 7, tmp_b);
373 clone(tmp_b , 7 * 7, this ->P_);
374 }
375 }
376

377 float AHRS :: getPitch (){
378 return enclosed (this -> initial_euler [0], this ->euler [0]);
379 }
380

381 float AHRS :: getRoll (){
382 return enclosed (this -> initial_euler [1], this ->euler [1]);
383 }
384

385 float AHRS :: getYaw (){
386 return enclosed (this -> initial_euler [2], this ->euler [2]);
387 }

Code 6.6: The implementation of the AHRS system from section 4.1.3, based on an
extended Kalman filter. The code was custom developed to be efficient and require only
the lightweight math library (see Code 6.3 and Code 6.4). Its structure is roughly based
on proposals by B. Taylor from Bolderflight. The AHRS system samples the sensor data
at startup, allowing the system to calibrate itself by determining the initial state and
determine the sensor noise. This is done by sampling the initial sensor measurements that,
assuming the system remains stationary, give the individual noise variances.

1 import numpy as np
2 from filterpy . kalman import KalmanFilter
3

4 # discrete time step
5 dt = 0.01
6

7 # load sensor noise
8 stddev = np. loadtxt (’sensor -stats.np’)
9

10 filter = KalmanFilter (dim_x =3, dim_z =2)
11 filter .x = np.zeros (3) # x -> [pos , vel , acc]
12

13 filter .F = np.array ([
14 [1, dt , 0.5 * dt ** 2],
15 [0, 1, dt],
16 [0, 0, 1]
17])
18

19 filter .P = np.diag ([stddev [0] ** 2, 1, stddev [1] ** 2])
20

21 filter .H = np.array ([
22 [1, 0, 0],
23 [0, 0, 1]
24])
25

26 filter .Q = np.outer(np.array ([
27 0.5 * dt ** 2,
28 dt ,
29 1
30]) * 0.05)
31

54

32 filter .R = np.diag ([stddev [0] ** 2, stddev [1] ** 2])
33

34 # load recorded sensor data
35 data = np. loadtxt (’sensor -data.np’)
36 states = []
37

38 # z -> [pos , acc]
39 for z in data:
40 filter . predict ()
41 filter . update (z)
42

43 states . append (filter .x[:])
44

45 np.array(states). tofile (’altimeter - result .np’)

Code 6.7: The altimeter code. This version is written in Python to enhance readability.
Most of the code exists both in C++ and Python, due to Python’s ease of use and better
better debugging tools, enabling easier development and testing. Later all code had to
be converted to C++ to be compiled for execution on the actual flight controller. The
examples above serve to illustrate all the optimisation steps that had been taken to make
the code more efficient. See Section 4.1.3.

D ank

Ich danke meinem Lehrer, Lukas Fässler, für die Begleitung und die Betreuung dieser Arbeit,
sowie für die Unterstützung während deren Entstehung. Meiner Familie danke ich für den
moralischen Beistand und die zahlreichen Diskussionen, in deren Verlauf einige Ideen zu
dieser Arbeit entstanden.

55

B ibliography

[1] Federal Aviation Administration. Pilot’s Encyclopedia of Aeronautical Knowledge. Fed-
eral Aviation Administration, 2007.

[2] D.D. Baals, W.R. Corliss, and United States. Wind Tunnels of NASA. NASA SP.
Scientific and Technical Information Branch, National Aeronautics and Space Adminis-
tration, 1981.

[3] C. Benavente-Peces, N. Cam-Winget, E. Fleury, and A. Ahrens. Sensor Networks:
6th International Conference, SENSORNETS 2017, Porto, Portugal, February 19-21,
2017, and 7th International Conference, SENSORNETS 2018, Funchal, Madeira, Por-
tugal, January 22-24, 2018, Revised Selected Papers. Communications in Computer and
Information Science. Springer International Publishing, 2019.

[4] S.M. Bozic. Digital and Kalman Filtering: An Introduction to Discrete-Time Filtering
and Optimum Linear Estimation, Second Edition. Dover Books on Engineering. Dover
Publications, 2018.

[5] F. Carden, R.P. Jedlicka, and R. Henry. Telemetry Systems Engineering. Artech House
telecommunications library. Artech House, 2002.

[6] P.A. Craig. Stalls & spins. Tab practical flying series. McGraw-Hill, 1993.

[7] F.A.A. Airplane Flying Handbook: Federal Aviation Administration. Skyhorse Publish-
ing, 2007.

[8] J.P. Fielding. Introduction to Aircraft Design. Cambridge Aerospace Series. Cambridge
University Press, 1999.

[9] United States. National Advisory Committee for Aeronautics. Technical Note - Na-
tional Advisory Committee for Aeronautics. Number Nr. 2091-2100 in Technical Note -
National Advisory Committee for Aeronautics. National Advisory Committee for Aero-
nautics, 1950.

[10] P. Gaydecki and Institution of Electrical Engineers. Foundations of Digital Signal Pro-
cessing: Theory, Algorithms and Hardware Design. IEE circuits and systems series:
Institution of Electrical Engineers. Institution of Engineering and Technology, 2004.

[11] Nikolai Zhukovsky Joukowsky. Über die Konturen der Tragflächen der Drachenflieger.
Zeitschrift für Flugtechnik und Motorluftschiffahrt, 1:281–284, 1910.

[12] J.B. Kuipers. Quaternions and Rotation Sequences: A Primer with Applications to
Orbits, Aerospace, and Virtual Reality. Princeton paperbacks. Princeton University
Press, 1999.

57

58 Bibliography

[13] A. Kurniawan. MicroPython for ESP32 Development Workshop. PE Press, 2017.

[14] W. Langewiesche. Fly By Wire: The Geese, The Glide, The ‘Miracle’ on the Hudson.
Penguin Books Limited, 2010.

[15] T.C. Lyon. Practical Air Navigation. Civil aeronautics bulletin. U.S. Government
Printing Office, 1940.

[16] J.H. Mathews and R.W. Howell. Complex Analysis for Mathematics and Engineering.
G – Reference, Information and Interdisciplinary Subjects Series. Jones and Bartlett,
2006.

[17] A.F. Molland and S.R. Turnock. Marine Rudders and Control Surfaces: Principles,
Data, Design and Applications. Elsevier Science, 2011.

[18] R.L. Naeseth, T.G. Gainer, United States. National Aeronautics, Space Administration,
and Langley Research Center. Low-speed Investigation of the Effects of Wing Sweep on
the Aerodynamic Characteristics of Parawings Having Equal-length Leading Edges and
Keel. NASA technical note. NASA, 1963.

[19] A. O’Dwyer. Handbook of PI and PID Controller Tuning Rules. Imperial College Press,
2006.

[20] D. Patranabis. Telemetry Principles. McGraw-Hill Education, Pvt Limited, 1999.

[21] S.V. Raković and W.S. Levine. Handbook of Model Predictive Control. Control Engi-
neering. Springer International Publishing, 2018.

[22] L.V. Schmidt. Introduction to Aircraft Flight Dynamics. AIAA Education Series. Amer-
ican Institute of Aeronautics & Astronautics, 1998.

[23] S.K. Singh. Process Control: Concepts Dynamics And Applications. Prentice-Hall Of
India Pvt. Limited, 2009.

[24] H.A. Soule and United States. Influence of Large Amounts of Wing Sweep on Stabil-
ity and Control Problems of Aircraft. National Advisory Committee for Aeronautics.
Technical Note. National Advisory Committee for Aeronautics, 1946.

[25] United States. Technical Note - National Advisory Committee for Aeronautics. Num-
ber Nr. 3191-3200 in Technical Note - National Advisory Committee for Aeronautics.
National Advisory Committee for Aeronautics, 1954.

[26] R. Stowell. The Light Airplane Pilot’s Guide to Stall/spin Awareness: Featuring the
PARE Spin Recovery Checklist. Rich Stowell Consulting, 2007.

[27] L. Tan. Fundamentals of Analog and Digital Signal Processing. AuthorHouse, 2008.

[28] E. Torenbeek. Synthesis of Subsonic Airplane Design: An introduction to the prelimi-
nary design of subsonic general aviation and transport aircraft, with emphasis on layout,
aerodynamic design, propulsion and performance. Springer Netherlands, 2013.

[29] N. Vaughan. Integrated Powertrains and Their Control. Wiley, 2001.

[30] J.S. Wolper. Understanding Mathematics for Aircraft Navigation. McGraw-Hill Educa-
tion, 2001.

Bibliography 59

[31] D. Wyatt and M. Tooley. Aircraft Communications and Navigation Systems. CRC
Press, 2013.

[32] G.W. Younkin. Industrial Servo Control Systems: Fundamentals And Applications,
Revised And Expanded. Fluid power and control. CRC Press, 2002.

[33] T. Zhang, M. Nakamura, S. Goto, and N. Kyura. Mechatronic Servo System Control:
Problems in Industries and their Theoretical Solutions. Lecture Notes in Control and
Information Sciences. Springer Berlin Heidelberg, 2004.

I ndex

32-bit design, 11
3d printer, 10

acceleration, 14, 15, 24, 33
accelerometer, 16, 23, 27, 28
accumulated error, 24
action, 30
actuators, 16
ADC, 17
adverse yaw, 8
AHRS, 15, 26
aileron, 8
ailerons, 16, 33
air pressure, 14, 15
air pressure at see level, 23
air resistance, 2
air-pressure sensor, 15
airfoils, 2
airfoils, immovable, 3
airframe, 2, 3, 9
airspeed, 9
alternating current, 16
altitude, 4, 23
analog to digital converter, 17
angle of attack, 2–4, 8
angular velocity, 9, 16, 33
anhedral angle, 6
Antonov An-255, 7
AoA, 2, 8
Apollo program, 21
arctan, 27
Arduino Mega 2560 Rev. 3, 11
asynchronous, 13
atan, 27
attenuation, 20
Attitude, 25
attitude heading reference system, 15
audio equipment, 20
automatic rudder control, 33

bank angle, 9

barometer, 15, 23
Barometric formula, 23
battery, 17
battery eliminator circuit, 17
baud-rate, 13
bentonite reinforced paper, 9
Bernoulli’s principle, 3
bi-directional, 15
bias vector, 26
binary flag, 14
Bixler, Josh, 10
Blériot, Louis, 52
Bolderflight Systems, 14
boundary layer separation, 6
Brian R. Taylor, 14
brushless electric motor, 16
bus, 13

Canada geese, 1
carrying capacity, 2, 3
center of mass, 7
centripetal force, 9
channel, 14
charge procedure, 17
charging, 17
Charles Lindbergh, 52
Chesley Sullenberger, 1
chip, 13
chip-to-chip communication, 15
chord-wise flow, 5
climb rate, 4, 8
clock signal, 13, 14
clock speed, 11
closed loop controller, 30
closed-loop system, 32
closed-loop-controller, 8
collision avoidance, 13
CoM, 7
compiled program, 11
completing the square, 22

61

complex frequency plane, 20
complex plane, 3
computational load, 32
computer guidance system, 21
condition, 22
conditional probability, 22
conductor, 14
control, 30
control algorithm, 30
control problem

first order, 33
second order, 33

control surface deflection, 33
control surfaces, 7, 11, 16, 30
controller, 11, 14

PDFF, 33
controller output, 32
converter, 17
coordinated turns, 33
cost function, 31, 32
covariance matrix, 21, 23
cross-dependencies, 32
current state, 30
current-sensing, 17
curve radius, 9
cutoff band, 20
cutoff frequency, 19
cutoff slope, 20
cutters, 10

damping effect, 34
Dank, 39
data bus, 13
data packets, 14
DC-motor, 16
deflection, 8
deflection angle, 16
delay, 20
density, 4
density function, 22
derivative of the cost function, 32
device-to-device communication, 14
difference quotient, 32
differentiable, 32
Digital low pass filter, 19
digital low pass filter, 19, 24
digital signal processing, 20
dihedral angle, 6
downlink capability, 13
drag, 16
drag force, 2

drift resistance, 24
drone, 2
dual processor cores, 11
duplex, 13
duplex connection, 13
duty cycle, 16

Eigenständigkeitserklärung, 49
EKF, 26
electronic speed controller, 16
elevator, 4, 8, 16, 33
energy consumption, 11
energy draw, 17
engine power, 4
error, 31
error buildup, 32
error state Kalman filter, 26
ESC, 16, 17
ESP-32, 11
Euler angles, 26
execution order, 11
expected measurements, 23
expected sensor results, 22
Extended Kalman Filter, 26
external forces, 16
external noise, 30

FBW, 1, 15
fbw, 4
feed forward path, 33
filter, 19
filter cycle, 22
filter equations, 21
filter order, 20
filter update equations, 23
final estimated state, 23
first order control problem, 33
first order filter, 20
fixed-wing design, 2, 3
flag, 14
flight control system, 11
flight controller, 9, 17
flight stability, 7
FliteTest, 10
floating point operations, 11
flow separation, 4, 6
fluctuation rate, 20
fly-by-wire, 1
flywheel gyroscope, 15
foam board 9
force of gravity, 2

62

frames, 13, 14
frequency plane, 20
FrSky, 11, 13
fuel efficiency, 3
fuselage, 7
fusion algorithm, 15
Futaba, 13

gathered noisy measurements, 22
Gaussian distribution, 22
gimbal locking, 26
glue, 10
gravitational force, 9
gravity, 2
gravity vector, 16, 28
ground commander, 33
gyroscope, 15, 16, 26

flywheel, 15
MEMS, 15

gyroscope bias, 26

half-duplex connection, 15
handshake procedure, 14
hardware, 11, 16
hardware transport, 13
header byte, 14
heading vector, 28
helicopter, 2
high-mounted wing, 7
hinges, 30
horizon, 27
horizontal stabiliser, 8
Hudson river, 1

I2C, 14, 15
ideal filter, 20
immovable airfoils, 3
implementation, 33
integral buildup, 33
integrated circuits, 15
integrated error, 32
integrated positional encoder, 16
integrator, 24
international altitude formula, 23
interrupts, 14
inverted logic level, 13
inverted pendulum, 7

Jacobian matrix, 28
Josh Bixler, 10
Joukowski profile, 3

Kálmán, Rudolf, 21
Kalman filter, 21, 28
Kalman gain, 23, 28

LaGuardia Airport, 1
laminar flow, 3
lateral stability, 7
launch site, 23
lift, 2, 3
lift coefficient, 4
lift force, 4
Lindbergh, Charles, 52
linear acceleration, 14, 15, 33
linear quadric estimator, 21
Linearization, 28
LiPo battery, 17
Lockheed, 5
loop controller, 30
Louis Blériot, 52
low pass filter, 19, 24
low-wing design, 7

Mach number, 2, 3
mach number, 5
machanical design, 3
magnetic field, 15
magnetic field vector, 28
magnetometer, 16
manual control, 14
master-slave-buses, 14
Mathematisch-Naturwissenschaftliches Gym-

nasium Rämibühl, iii
matrix, 30
mean, 22
measurement matrix, 22
MEMS gyroscope, 15
micro controller, 11
Micro Electro Mechanical System, 15
Miracle on the Hudson, 1
model predictive control, 30
model predictive controller, 33
motor, 16
motor brackets, 10
multi-device duplex rules, 14
multitasking, 11

navigation, 8, 16
noise, 30
noise matrix, 21
non-deterministic task manager, 11
normalize, 22

63

nosedive, 5
NXP Semiconductors, 14

operating system, 11
optimal control problem, 30
order, 20
oscillation, 32–34
over-deflection, 30
overheating, 17
overshoots, 32

P-38 Lightning, 5
parity, 13
payload, 2–4, 14
payload size, 13
PDFF controller, 33
Philips Semiconductors, 14
PID controller, 32
pitch, 27
pitch angle, 8, 9, 33
pitch axis, 33
plant, 30
plant state, 21
polyethylene foam, 9
positional encoder, 16
positional error, 34
potentiometer, 16
power supply, 17
Powertrain, 16
predicted position, 33
predicted state, 22, 31
prediction, 33
prediction equation, 21
prediction horizon, 30, 33
prediction step, 21, 27
prediction tree, 31
pressure, 14
probability, 22

conditional, 22
program multitasking, 11
propeller propulsion, 2
proportional integral derivative control, 30
proportional integral derivative controller, 32
propulsion, 2
protocol, 13
pulse-width-modulated signals, 16
PWM, 16

quaternion, 26

radius, 9

random variable, 22
Raspberry Pi, 11
rc-models, 16
rc-remote, 11
real component, 26
real time multitasking, 11
real time operating system, 11
receiver, 13
rectangular waveform, 16
redundancy, 8
response time, 20, 24, 33
Reynolds number, 2, 3
Riemann sum, 32
rigidity, 9
roll, 27
roll angle, 33
rotary-wing aircraft, 2
rudder, 8, 16, 33
Rudolf Kálmán, 21

SBus, 13, 14
Schlieren photograph, 6
second order control problem, 33
Second World War, 5
see level, 23
sensitivity, 14
sensor

air-pressure, 15
temperature, 15

sensor data, 23
sensor fusion, 21, 23
sensor fusion algorithm, 15, 26
sensor measurements, 11, 22
sensor noise, 19
sensors, 14
sepia, iii
servo motor, 16, 17
servos, 16
shock wave, 6
shockwaves, 5
sideslip, 8, 33
signal attenuation, 20
signal noise, 19
signal processing, 20
silicon wavers, 15
Simple Cub, 10
simplex, 13
single pole filter, 20
single-cycle floating point operations, 11
slope, 20
smartwatches, 15

64

smoothing, 20
software, 11
software transport, 13, 14
span-wise flow, 5
speed control, 16
speed of sound, 2
speed-scaling, 8
split control surfaces, 8
stabilisation, 11
stall, 4
stall angle, 4
stall speed, 4, 5
standard deviation, 27
state, 30
state quaternion, 26, 28
state space, 30
state transition function, 26
stator, 16
stop bits, 13
subsonic airstream, 5
Sullenberger, Chesley, 1
supersonic flow, 5
synchronous, 13, 14
system reliability, 11
system surpassing, 33

target, 30
target state, 31
target value, 33
task manager, 11
Taylor, Brian R. Taylor, 14
telemetry, 11
telemetry data, 11
telemetry transceiver, 17
temperature gradient, 23
temperature sensor, 15
three-phase alternating current, 16
threshold, 19
time critical, 11
timestamps, 14
top mounted wing, 7
torque, 8
transition function, 21
transonic flow, 6
transport

hardware, 13
software, 13, 14

tuning parameters, 32
turbulence, 4, 9, 16
turn center, 9

UART, 13, 14
UAV, 2
uncertainty, 21, 23
uni-directional serial data bus, 13
unidirectional protocol, 16
Universal asynchronous receiver-transmitter,

13
universal battery charger, 17
unmanned aerial vehicle, 2
update frequency, 11
update rate, 14
update step, 28
uplink connection, 13
US Airways Flight 1549, 1
UVA, 3

variance, 22, 23, 27
velocity, 4
vertical acceleration, 24
vertical accelerometer, 23
voltage divider, 17

waveform, 16
weather condition, 23
weather disturbances, 9
weighted sum, 32
weights, 31
Wilbur Wright, 52
wing chord, 2, 5
wing loading, 2, 4
wing placement, 6
Wing Sweep, 5
wireless communication, 11
wooden dowels, 10
Wright, Wilbur, 52

yaw angle, 8, 28
yaw axis, 28

Zürich blue, iii

65

L ist of Figures

1.1 The Miracle on the Hudson . 1

2.1 Joukowski profile . 5

2.2 Wing sweep . 7

2.3 Transonic flow . 8

2.4 Decomposition of the flow velocity. 8

2.5 Dihedral angle. 9

2.6 Torque induced by elevator . 9

2.7 Ailerons . 10

2.8 Aircraft during turn flight . 11

2.9 The final model aircraft . 12

3.1 Electrical Systems . 13

3.2 System Overview . 14

3.3 Synchronous vs. Asynchronous . 15

3.4 Simplex vs. Duplex . 16

3.5 The structure of an SBus frame. 16

3.6 I2C . 17

3.7 PWM Signan . 19

3.8 Voltage divider . 19

3.9 Current sensing . 20

3.10 Powertrain . 20

4.1 Signal noise . 21

4.2 Low pass filter . 22

4.3 Low pass filter . 23

4.4 Kalman Altitude . 27

4.5 Roll Comparison . 32

67

4.6 Closed feedback loop . 33
4.7 Prediction tree with the best possible branch (in red). 34
4.8 Servo Output . 37

68

L ist of Codes

3.1 Configuration of the UART bus . 16
6.1 SBus interface header . 41
6.2 SBus interface implementation . 41
6.3 Math library header . 43
6.4 Math library implementation . 44
6.5 AHRS header . 47
6.6 AHRS implementation . 48
6.7 Altimeter code . 55

69

E igenständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende schriftliche Arbeit selbstständig und nur un-
ter Zuhilfenahme der in den Verzeichnissen oder in den Anmerkungen genannten Quellen
angefertigt habe.

Zürich, den 7. Januar 2020 Jonathan Hungerbühler

71

I confess that in 1901 I said to my brother Orville that man would not
fly for fifty years.

— Wilbur Wright

If I had to choose, I would rather have birds than airplanes.
— Charles Lindbergh

Le plus beau rêve qui a jamais hanté le cœur des hommes depuis Icare
est aujourd’hui réalité.

— Louis Blériot

	Comments on the title page
	Abstract
	Introduction
	Problem description
	Notions and notations

	Mechanics and fluid dynamics
	Lift
	Wing Loading
	Angle of Attack and Stall
	Wing Sweep
	Dihedral and Wing Placement
	Control Surfaces
	Navigation
	Material
	Model

	Electrical aspects
	Controller
	Telemetry
	Sensors
	Servos
	Powertrain

	Software
	Digital signal processing
	Digital low pass filter
	Kalman Filter
	Sensor Fusion
	Extended Kalman Filter

	Control
	Model Predictive Control
	Proportional Integral Derivative Controller
	Implementation

	Conclusion
	Appendix: Code
	Dank
	Bibliography
	Index
	List of Figures
	List of Codes
	Eigenständigkeitserklärung

